Search results

Search for "spintronic" in Full Text gives 55 result(s) in Beilstein Journal of Nanotechnology.

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • ordering can also be established in ZnO lattices upon doping with transition-metal and/or rare-earth elements (known as magnetic semiconductors, DMSs). This is expected to enable the development of next-generation spintronic devices [14] applicable to quantum and neuromorphic computing for artificial
PDF
Album
Full Research Paper
Published 11 Nov 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • sputtering; spintronic; Introduction Magnetite, also known as Fe3O4, has been extensively researched as one of the most common half-metallic materials in the field of spintronics for a considerable period of time. Magnetoelectronic devices are possible because of the material’s high Curie temperature of 860
  • indicates the potential to facilitate the development of novel magnetic and spintronic architectures. Results and Discussion AFM and line-cut method were used to examine the surface morphology and grain sizes of the Fe3O4 films that were formed on SiO2/Si(100), MgO(100), and MgO/Ta/SiO2/Si(100) multilayer
PDF
Album
Full Research Paper
Published 14 Oct 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • all measurements have been completed, KOH etching can be conducted, and as a result, the sample is placed on a free-standing SiN membrane and can be studied under TEM. This is useful for future high-frequency correlative characterization of multilayer spintronic devices. Another possible further
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • superconductors opens new ways for the development of prospective spintronic devices such as magnon transistors [2][3] and superconducting magnon crystals [4]. In this context, the challenge of superconducting spin injection is one of the central problems in modern superconducting spintronics. There are several
  • in hybrid superconductor/ferromagnetic insulator structures, making them promising candidates for novel spintronic devices. The investigated hybrid superconducting structure consisting of a ferromagnetic insulator (FI) adjacent to a superconductor (SC). The interface between the superconducting layer
PDF
Album
Full Research Paper
Published 21 Feb 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • following novelties are presented in the contributed articles of this volume: - Novel promising spintronic elements and materials with controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the epitaxial PdFe films and PdFe/Ag/PdFe heterostructures
PDF
Editorial
Published 10 Jan 2023

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • ; Introduction The search for room-temperature magnetic semiconductors has been the driving force behind the increasing interest of material scientists and solid-state physicists in magnetic oxides [1]. This is due to their potential applications as building block of spintronic devices. Magnetic oxides are
PDF
Album
Full Research Paper
Published 15 Sep 2022

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • this state allows for the controllable tuning of magnetic orientation. Thus, we identify the range of parameters and the procedure for the controllable operation of superconducting spintronic devices based on S/F heterostructures. Essentially we conclude that for moderately small (micrometer-scale
PDF
Album
Full Research Paper
Published 17 Aug 2021

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • topological insulator Bi2Se3 can be used, for example, for the fabrication of 2D layered heterostructures with graphene. Thus, systems can be created to study the unusual interaction of Dirac fermions, opening up new possibilities for novel electronic and spintronic devices [5]. Another famous 2D insulator is
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • properties of the Mn–Ge alloy to design and fabricate novel nanodevices. Keywords: nanowires; semi-metallic Ge–Mn alloy; strain-induced growth; Introduction Metallic and semimetallic nanowires (NWs) have attracted vast interest in nanoscale electronic and spintronic systems due to their thermal [1
  • spintronic applications. However, to achieve a reliable injection and detection of spin-polarized electrons in spintronic devices, appropriate heterostructures between semiconductors and magnetic alloys [9][10] need to be formed. Hence, a tailored growth process that preserves the injection efficiency and
  • high Curie temperature is necessary. Mn–Ge alloys epitaxially grown on Ge substrates have been shown to be promising candidates for such spintronic systems [11][12][13]. Transition metal germanides that have sharp interfaces and a tunable Schottky barrier, in particular, can advantageously replace
PDF
Album
Full Research Paper
Published 28 Apr 2021

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • interference [13][14], Kondo physics [15][16][17][18][19][20][21][22][23][24][25][26][27][28][29], spintronic effects [10][30][31][32], and induced superconductivity [33][34][35]. In the present paper, we are interested in the effects of strong correlations. As electrons are confined in fewer dimensions, the
PDF
Album
Full Research Paper
Published 23 Dec 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • multilayer nanosystems for spintronics, the number of works is extremely limited. This work presents the advancements in our previous studies on the modeling of various nanosystems [26][27][28][29], including spintronic studies [30][31][32], where the aim was to investigate the influence of selected
  • tunable properties. The choice of niobium and cobalt as the metals forming the nanolayers is made because of the wide potential of using these elements in spintronics. At the moment, not only has research been carried out on spintronic devices involving these metals [36][37], but also new patents are
PDF
Album
Full Research Paper
Published 24 Nov 2020

Functional nanostructures for electronics, spintronics and sensors

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1704–1706, doi:10.3762/bjnano.11.152

Graphical Abstract
  • nanotechnology that is developing especially rapidly is research on functional nanostructures for targeted applications. One of the most important and promising of these targeted applications are superconducting spintronic nanostructures for supercomputers of novel, “post-Moore” generation. The exponential
PDF
Editorial
Published 10 Nov 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • ; Introduction Atomic-level control of molecular materials at interfaces is crucial to fully exploit the materials’ potential in electronic, optoelectronic, spintronic, and sensing applications [1][2]. Specifically, the effects of adsorption, conformation, and supramolecular organization on the resulting
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates

  • Wael M. Mohammed,
  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Airat G. Kiiamov,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2020, 11, 807–813, doi:10.3762/bjnano.11.65

Graphical Abstract
  • the proximity effect [28]. This may shift the material operation temperature close to or even below the LHeT. With the iron content x in Pd1−xFex alloy below 0.08 its magnetic properties meet all the requirements for the F-layer in superconducting spintronic S/F/S-type structures, i.e., it is a weak
PDF
Album
Full Research Paper
Published 15 May 2020

Observation of unexpected uniaxial magnetic anisotropy in La2/3Sr1/3MnO3 films by a BaTiO3 overlayer in an artificial multiferroic bilayer

  • John E. Ordóñez,
  • Lorena Marín,
  • Luis A. Rodríguez,
  • Pedro A. Algarabel,
  • José A. Pardo,
  • Roger Guzmán,
  • Luis Morellón,
  • César Magén,
  • Etienne Snoeck,
  • María E. Gómez and
  • Manuel R. Ibarra

Beilstein J. Nanotechnol. 2020, 11, 651–661, doi:10.3762/bjnano.11.51

Graphical Abstract
  • (Sr2TaAlO6)0.7 and LaAlO3 substrates. In this configuration, the combination of both functional perovskites constitutes an artificial multiferroic system with potential applications in spintronic devices based on the magnetoelectric effect. La2/3Sr1/3MnO3 single layers and BaTiO3/La2/3Sr1/3MnO3 bilayers
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • , e.g., single-flux quantum circuits [46][47], spintronic devices [48], memory elements [49][50][51][52][53][54][55][56][57][58] and spin-valves [59][60][61][62][63][64][65], magnetoelectronics [66][67][68], qubits [69], artificial neural networks [70], microrefrigerators [71][72], and low-temperature
PDF
Album
Full Research Paper
Published 23 Jan 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • moment can be engineered by electrically controlling the properties of a transition metal adatom on graphene providing the possibility to develop graphene-based spintronic devices [56]. Therefore, the physical properties of a graphene monolayer with one of its carbon atoms substituted with a magnetic
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • alloys [1], there has been explosive interest in manipulating the electron spin in a Heusler-alloy-based spintronic device [2][3][4]. As one of the most important spintronics devices, a current-perpendicular-to-plane (CPP) spin valve (SV) based on the giant magnetoresistive (GMR) effect consists of a
  • -polarized Ti2NiAl bulk and high spin polarization at the interface of the device. Therefore, Ti2NiAl/Ag/Ti2NiAl CPP-SV has great application potential in spintronic devices. Simulation Details The Ti2NiAl/Ag/Ti2NiAl device with four different atomic terminated interfaces was geometrically optimized by
PDF
Album
Full Research Paper
Published 08 Aug 2019

Electronic and magnetic properties of doped black phosphorene with concentration dependence

  • Ke Wang,
  • Hai Wang,
  • Min Zhang,
  • Yan Liu and
  • Wei Zhao

Beilstein J. Nanotechnol. 2019, 10, 993–1001, doi:10.3762/bjnano.10.100

Graphical Abstract
  • alternative method to tune the magnetism and electronic structure of black phosphorene, which might be beneficial for its application in future spintronic devices. Keywords: doped black phosphorene; electronic properties; first principles; magnetic properties; Introduction The successful preparation of
  • graphene has led to extensive research efforts on two-dimensional (2D) materials. Although graphene exhibits large carrier mobility and intriguing mechanical properties, its zero bandgap impedes its application in spintronic devices [1][2]. Subsequently, 2D transition-metal dichalcogenides (TMDs) have
  • black phosphorene a promising candidate for future spintronic devices [11][12]. It is well known that spintronic devices not only require a proper bandgap and high carrier mobility, but also require magnetism. However, there is no magnetism in black phosphorene since it only consists of the nonmagnetic
PDF
Album
Full Research Paper
Published 02 May 2019

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • ; nanostructured materials; thin films; Introduction Diluted magnetic semiconductors (DMS) are very promising materials for spintronic devices, because DMS offer the combination of magnetic and semiconducting properties. Currently, the most commonly studied DMS systems are those based on III–V semiconductors
  • semiconductor matrix [9] and a lower density of scatterers. Thus, granular materials could be of interest, both as an object of fundamental studies of DMS systems and as a versatile material suitable for testing prototype spintronic devices. Recent studies of MnAs inclusions embedded into a GaAs matrix showed
PDF
Album
Full Research Paper
Published 14 Sep 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • -storage elements or spintronic devices [1]. Their specific magnetic and magneto-transport properties, directly related to their easily tunable composition, structure and morphology, are making them perfect candidates for such novel devices [1][2]. For example, in contrast to other nanosized magnetic
  • and associated magnetoresistive properties of nanowires can be further modified in multiple segment nanowires consisting of ferromagnetic (e.g., Ni) and nonmagnetic (e.g., Cu) successive segments making such systems interesting for spintronic applications [6][7]. Another possibility to control the
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction

  • Juan L. Palma,
  • Alejandro Pereira,
  • Raquel Álvaro,
  • José Miguel García-Martín and
  • Juan Escrig

Beilstein J. Nanotechnol. 2018, 9, 1728–1734, doi:10.3762/bjnano.9.164

Graphical Abstract
  • -dimensional magnetism and a broad range of applications, such as a new generation of electronic devices [1], sensors [2], ultra-high density recording media – due to the absence of the superparamagnetic limit as there are no isolated magnetic islands – [3], and magnonics and spintronic devices [4][5]. The
PDF
Album
Full Research Paper
Published 11 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • could be uses in spintronics. But the lack of suitable materials limits the development of spintronic applications. Doping semiconductors may be applied to achieve spin-polarized currents, but this requires a complicated process. Although many materials have been predicted in theory for this purpose
  • half-metallicity. Therefore, the WS2 monolayer with adsorbed NO is ideal for spintronic applications since it has one metallic spin channel and one semiconducting spin channel. After NO2 adsorption (Figure 3b), the spin-down and spin-up p-orbitals of the N and O atoms are pinned approximately 0.5 and 2
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Solid-state Stern–Gerlach spin splitter for magnetic field sensing, spintronics, and quantum computing

  • Kristofer Björnson and
  • Annica M. Black-Schaffer

Beilstein J. Nanotechnol. 2018, 9, 1558–1563, doi:10.3762/bjnano.9.147

Graphical Abstract
  • ferromagnetic leads, the device can be used for sensitive measurements of magnetic field strengths. The same setup can also be used to implement a spintronic switch. Instead using normal metallic leads, we show that a switchable spintronics NOT-gate can be constructed. Finally, we also demonstrate how a
PDF
Album
Full Research Paper
Published 25 May 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • triangular holes in future magnonic and spintronic devices. Keywords: ferromagnetic antidot lattice; magnonic crystal; micromagnetic simulations; spin-wave modes; time-resolved magneto-optical Kerr effect; Introduction Recent advances in nanofabrication techniques have resulted in artificially patterned
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018
Other Beilstein-Institut Open Science Activities