Search results

Search for "thermal" in Full Text gives 1243 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Multifunctional properties of bio-poly(butylene succinate) reinforced with multiwalled carbon nanotubes

  • Volodymyr Krasinskyi,
  • Krzysztof Bajer,
  • Ludmila Dulebova,
  • Nickolas Polychronopoulos,
  • Oksana Krasinska and
  • Daniel Kaczor

Beilstein J. Nanotechnol. 2025, 16, 1014–1024, doi:10.3762/bjnano.16.76

Graphical Abstract
  • strength, thermal stability, and biodegradability. However, to broaden its range of applications, certain properties require enhancement, including mechanical performance, thermal and electrical conductivity, biodegradation rate, and barrier properties [1][2][3][4][5]. The limited biodegradability of PBS
  • morphology and properties of the polymer matrix by altering its structure, crystallinity, thermal stability, and mechanical behavior [9][10][11]. CNTs can be classified into two basic types, namely, single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). SWCNTs exhibit slightly
  • many researchers [9][10][11][12][13][14][15][16]. Regarding PBS-based nanocomposites, most studies focus on the influence of CNTs (including modified CNTs) on their thermal behavior [17][18][19], crystallization [20][21][22], structure [14][17][21][22][23], and biodegradability [12]. PBS/CNT
PDF
Album
Full Research Paper
Published 03 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • of ablation, fragmentation or colloidal fusion may look macroscopically different in each application, the underlying fundamental mechanisms are always the same cascade of laser interaction with matter, non-thermal or thermal energy deposition, phase transitions, and the subsequent structure
  • demanding studies that eventually show convergence with experimental results. Generally, the classification of the mechanisms in LSPC identifies three main pathways that are pictured schematically in Figure 1: (i) thermal processes, where the condensed matter is heated to high lattice temperatures, leading
  • to melting, reshaping (Figure 1B,C), evaporation, and phase explosion near the critical point (Figure 1H) [39][46][47][48]; (ii) stress-induced decompositions, where competition between heating and expansion leads to spallation or cavitation [36][49][50] (Figure 1I); (iii) non-thermal processes
PDF
Album
Review
Published 02 Jul 2025

Tendency in tip polarity changes in non-contact atomic force microscopy imaging on a fluorite surface

  • Bob Kyeyune,
  • Philipp Rahe and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 944–950, doi:10.3762/bjnano.16.72

Graphical Abstract
  • structure elucidation and identification of surface sites. However, this approach is presently not feasible for measurements performed at room temperature as the required control over the tip termination is challenged by thermal motion. For room-temperature measurements, it is common practice to bring the
PDF
Album
Full Research Paper
Published 26 Jun 2025

Structural and magnetic properties of microwave-synthesized reduced graphene oxide/VO2/Fe2O3 nanocomposite

  • Sumanta Sahoo,
  • Ankur Sood and
  • Sung Soo Han

Beilstein J. Nanotechnol. 2025, 16, 921–932, doi:10.3762/bjnano.16.70

Graphical Abstract
  • in a honeycomb fashion enabled this special class of materials to exhibit desirable characteristics, such as enhanced electrical conductivity, higher mechanical strength, elevated surface area, and high thermal and chemical stability. Owing to such improved characteristics, graphene materials
  • ternary NCs of graphene materials, several conventional approaches, such as sol–gel, hydrothermal/solvothermal, calcination/thermal annealing, chemical vapor deposition, liquid-phase exfoliation, and freeze-drying have been reported. However, the MW-assisted synthetic approaches are found to be superior
PDF
Album
Full Research Paper
Published 20 Jun 2025

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • major role is played by the primary ion beam, together with a thermal heat spike, excited surface atoms (ESA), or secondary electrons (SE). According to Hlawacek et al. [8], the number of ESA is proportional to the nuclear stopping power, so for heavier ions this mechanism dominates the deposition. The
PDF
Album
Full Research Paper
Published 16 Jun 2025

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • nanopores in thermal and plasma-enhanced chemical vapor-deposited (PECVD) SiO2 using synchrotron-based small-angle X-ray scattering (SAXS). The nanopores were fabricated by irradiating the samples with 89 MeV, 185 MeV, and 1.6 GeV Au ions, followed by hydrofluoric acid etching. We present a new approach for
  • differences between the nanopores in thermal and PECVD SiO2. The track-to-bulk etching rate ratio is significantly different for the two materials, producing nanopores with cone angles that differ by almost a factor of two. Furthermore, thermal SiO2 exhibits an exceptionally narrow size distribution of only 2
  • -etched nanopores in two types of silicon dioxide, namely, one produced by wet thermal oxidation of Si (thermal SiO2) and another deposited by plasma-enhanced chemical vapor deposition (PECVD). Thermally grown SiO2 is of high quality and stoichiometric, however, requires high temperatures for growth, and
PDF
Album
Full Research Paper
Published 12 Jun 2025

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • thin nickel film deposited by thermal evaporation. The graphitization of diamond with and without a nickel coating as a result of high-vacuum annealing at a temperature of about 1100 °C was studied in situ using synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption
  • diamond surfaces is initiated at 750 °C. A temperature of about 1500 °C is needed for the formation of extended graphene-like layers, and temperatures higher than 2000 °C are required for the complete conversion of the diamond (111) surface to graphitic layers [10][11]. Thermal stability of diamond
  • crystalline quality in the PCD film at the micron scale (Supporting Information File 1, Figure S2). Thermal evaporation of nickel and its deposition on the PCD film surface resulted in the formation of a uniform metallic layer with a thickness of about 40 nm (Supporting Information File 1, Figure S1d). The
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • deposition rates and uniform growth of films with good reproducibility [4]. The physical properties of grown ZnO films can be tuned by altering various growth parameters and employing post-deposition treatments such as ion implantation and thermal annealing. Ion implantation has proven a versatile tool to
  • strain in the implanted layers; thus, the microstrain values increase with fluence [24]. Strain in implanted ZnO films arises primarily from lattice mismatch, which is due to the difference in thermal expansion coefficients between film and substrate. Also, when argon ions are implanted into the ZnO
PDF
Album
Full Research Paper
Published 11 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • structural modifications associated with thermal reduction in CeO2/Pt(111) films, as well as the influence of the Pt substrate’s proximity, were investigated using XANES/EXAFS combined with surface X-ray diffraction (SXRD) [47]. A strong interaction between cerium oxide and platinum was identified and
  • was used to achieve a more detailed understanding of the processes accompanying thermal reduction in ultrathin Pt(111) supported cerium oxide nanostructures [49]. In this technique, the incident photon energy is scanned across an absorption edge, while a spectrometer selects the energy of the emitted
  • Figure 2, ascribed to screened (A1) and unscreened (A2) 2p–5d transitions with the additional splitting due to the fine structure of the 5d band due to crystal field effects. As shown in Figure 2a, the intensity and shape of the A1 feature of the 2 ML sample are significantly modified by thermal
PDF
Album
Review
Published 10 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • exhibit superparamagnetic behavior, where magnetic moments of particles fluctuate due to thermal energy but can be aligned under an external field. Above TB, thermal fluctuations dominate, causing a transition to a superparamagnetic fluctuating state. This transition is particularly relevant for
  • ). This difference can be attributed to variations in alloy composition and material properties, which influence the ablation plume dynamics and particle formation kinetics during PLAL. Specifically, the thermal properties, such as melting point and heat conductivity, and the volatility of the alloy
  • FC curve shows higher magnetization than the ZFC curve, indicating that spin alignment occurs faster when cooled in the presence of a magnetic field because of the pre-alignment that the magnetic field produces. Above 179 K, the ZFC and FC curves converge, suggesting that thermal energy disrupts
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • hydroxide hydrogel on polylactide film At first, commercial polylactide granules (PLA Luminy LX175, TotalEnergies Corbion) was put in a steel mold for thermal compression at 190 °C to produce a PLA plate. A piece of the PLA plate was put in a thin plastic mold (polyethylene terephthalate) for thermal
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
PDF
Album
Full Research Paper
Published 02 Jun 2025

Serum heat inactivation diminishes ApoE-mediated uptake of D-Lin-MC3-DMA lipid nanoparticles

  • Demian van Straten,
  • Luuk van de Schepop,
  • Rowan Frunt,
  • Pieter Vader and
  • Raymond M. Schiffelers

Beilstein J. Nanotechnol. 2025, 16, 740–748, doi:10.3762/bjnano.16.57

Graphical Abstract
  • ratio of both luciferase activities was used as a read out for LNP-mediated knockdown. Protein thermal stability To determine the thermal stability of ApoE, a solution of ApoE or BSA at 170 µg/mL in PBS was incubated at room temperature, 37 °C, 56 °C or 75 °C shaking at 300 rpm for 30 min. Subsequently
  • , the solutions were transferred to a black 96 well plate (50 µL/well) after which an equal volume of 20 µM ThT in PBS was added. After 5 min at rt, the fluorescence was measured (excitation: 450 nm, emission: 505 nm) using a Spectramax iD3 plate reader (Molecular Devices). Thermal stability of ApoE in
  • ). These findings are in line with published work, where thermal instability was shown for ApoE3 with an unfolding temperature of around 53 °C [33][34][35]. In contrast, no significant increase in fluorescence was seen for BSA at 56 °C compared to rt or 37 °C (Figure 2B), as can be expected for albumin
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2025

Synthesis of a multicomponent cellulose-based adsorbent for tetracycline removal from aquaculture water

  • Uyen Bao Tran,
  • Ngoc Thanh Vo-Tran,
  • Khai The Truong,
  • Dat Anh Nguyen,
  • Quang Nhat Tran,
  • Huu-Quang Nguyen,
  • Jaebeom Lee and
  • Hai Son Truong-Lam

Beilstein J. Nanotechnol. 2025, 16, 728–739, doi:10.3762/bjnano.16.56

Graphical Abstract
  • hydroxy groups attached to its polymer chain, is widely used as a binding agent in material synthesis. PVA promotes chemical cross-linking between CMC molecules by interacting with acidic and/or basic functional groups under thermal conditions [33][34]. This cross-linking occurs when the polymer’s free
PDF
Album
Full Research Paper
Published 27 May 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • , green, and IR ranges. Metal complex dyes are characterized by high thermal and UV stability and were therefore preferred for initial LFL studies [32]. Asahi et al. and Tamaki et al. repeatedly showed that using a UV nanosecond laser with a repetition rate of several hertz not only produces NPs of
  • reduction in particle diameters. Moreover, pronounced morphological changes caused by thermal effects (i.e., LML) like spheroidization of the MPs cannot be observed. This points towards the occurrence of laser fragmentation already after one laser processing step under near single-pulse conditions. However
  • . The degradation of curcumin can occur either by thermal or by photochemical channels. Under the conditions examined herein, thermal degradation is unlikely to occur to a large extent as curcumin has a comparatively high melting temperature of 456–459 K [50], which is not permanently exceeded when
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • operando studies of technologically relevant nanoscale heterostructure devices. Self-organized NiO microcavity arrays fabricated by thermal treatments In the class of the very few p-type oxides, NiO stands out as one of the most versatile and promising materials in diverse applications including
  • . Cathodoluminescence measurements demonstrated the presence of a visible emission at 2.5 eV associated with Ni deficiency, whose relative intensity varies as a function of the thermal treatment and the consequent structure of defects. The NiO samples showed additional luminescence due to Ni interstitial and d–d
PDF
Album
Review
Published 23 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • solubility and enhanced dissolution using a minimum quantity of carriers. The developed SLNs were evaluated regarding drug content and using scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), as well as polydispersity index (PDI), particle size
  • exhibited less sharp peaks than APT because of a reduction of the polymer crystallinity. Also, the interaction of polymeric content with APT via hydrogen bonding converts the crystalline form of APT into an amorphous form [20]. TGA and DSC studies Thermogravimetric analysis showed that the thermal
  • poloxamer 407 appeared to be more stable with mass losses of 80% and 70%, respectively, due to thermal decomposition between 330 and 480 °C. APT-CD-NP4 and APT-PX-NP8 weight losses of more than 80% were observed between 145 and 330 °C. For, APT-PX-NP8, there was complete weight loss at 430 °C. DSC tests
PDF
Album
Full Research Paper
Published 15 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • . developed a micro–nanofiber dressing by electrospinning a blend of SF, chitosan, and halloysite nanotubes (HNTs) loaded with the antibacterial agent chlorhexidine digluconate (CHD). The addition of HNTs considerably altered the nanofiber structure, and increased the material’s thermal stability and
PDF
Album
Review
Published 24 Apr 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • great importance. Defective CNFs are utilized to build composites with specific thermal conductivities as part of thermal insulation materials. They can also be used to make materials that combine strength and flexibility, for example, in electronics or damping devices. The presence of defects in CNFs
  • aluminum foil covered drum was placed 18 cm from the needle to collect the nanofibers. The flow rate of the solution was 0.5 mL/h. The as-prepared nanofibers underwent thermal treatments, and it was found that the nanofibers exhibited optimal properties after treatment at 850 °C. The SEM and TEM image
  • with a funnel. During the growth process, the wire mesh quenches the secondary diffusion flame, which allows the thermal conditions of the growth to be influenced solely by the premixed flame front. The corresponding temperature distribution graph in Figure 4b shows the temperature of the flame at the
PDF
Album
Full Research Paper
Published 23 Apr 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • diameter in CdO subjected to 120 MeV silver ion irradiation is calculated to be approximately 8 nm using an inelastic thermal spike simulation code. This study elucidates the intriguing reappearance of the B1 phase under oxygen ion irradiation and highlights the radiation stability of the B2 phase through
  • diverse characterization techniques, demonstrating the potential reversibility of the B1 to B2 phase transformation induced by ion irradiation. Keywords: irradiation; phase transformation; thermal spike; track diameter; X-ray absorption near edge spectroscopy; X-ray photoelectron spectroscopy
  • described through two primary models: the Coulomb explosion model, which relies on electrostatic repulsive forces [10][11], and the thermal spike model, where energy is transferred to lattice atoms, resulting in melting and subsequent quenching to form tracks [12][13]. The latter model has been more widely
PDF
Album
Full Research Paper
Published 17 Apr 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • all deposits, the GIS and substrate temperatures were set to 85 and 70 °C, respectively. At these temperatures, no thermal decomposition occurred inside the GIS, nor did condensation or CVD processes take place on the substrate, while practical growth rates of deposits were observed. The precursor
  • substrates were held at room temperature for [Pd(η5-Cp)(η3-allyl)] and [Pd(hfac)2], which may explain the lower carbon removal efficiency due to residual gas contamination or less effective thermal desorption processes. Comparison with [Cu(tbaoac)2] When comparing [Cu(tbaoac)2] and [Pd(tbaoac)2], the highest
  • of a granular deposit at the upper part of the pillar. Similar observations have been reported in a detailed previous study with a dimethyl(acetylacetonate)gold precursor and were attributed to the thermal decomposition of the precursor at the pillar apex due to local heating by energy implantation
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • corresponding results are presented in Figure 6. Catalysts were tested as obtained, that is, without prior thermal activation. Although the conversion of citral after 3 h of reaction is relatively low for all catalysts, it indicates that the active sites are accessible to citral molecules. Overall, citral
  • of the IE-prepared materials. The TPR profiles further revealed that the thermal reduction of isolated Co2+ and Ni2+ ions (compensation cations in extra-framework ionic positions) was facilitated in the bimetallic systems, likely because of the synergetic interaction of multiple species and a reduced
  • reduction (TPR) analyses were performed on an AutoChem 2910 instrument (Micromeritics, USA) equipped with a thermal conductivity detector (TCD). The procedure for TPR involved heating the sample in a 1.0 vol % H2/Ar gas mixture at a flow rate of 30 mL/min, from room temperature to 600 °C, at a ramp rate of
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • boron nitride (h-BN) [19]. Among these materials, h-BN stands out because of its properties, which are similar to those of graphene. It is composed of alternating boron and nitrogen atoms arranged in a honeycomb-like crystalline structure, characterized by high thermal stability, low dielectric constant
PDF
Album
Full Research Paper
Published 11 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • remarkable thermal stability, high melting point, and chemical inertness. In the present study, Mo thin films of different thicknesses (150, 200, 250, and 300 nm) have been deposited on Si(100) substrates via radio frequency sputtering in an argon atmosphere at room temperature. Some of these films have been
  • range of applications [23][24][25][26][27][28]. Kim et al. [23] examined the impact of a 3 × 1017 N2+·cm−2 ion fluence on the structural characteristics, surface morphology, and thermal stability of Mo thin films. The internal stress of these films transitioned from strongly compressive to weakly
PDF
Album
Full Research Paper
Published 01 Apr 2025

Effect of additives on the synthesis efficiency of nanoparticles by laser-induced reduction

  • Rikuto Kuroda,
  • Takahiro Nakamura,
  • Hideki Ina and
  • Shuhei Shibata

Beilstein J. Nanotechnol. 2025, 16, 464–472, doi:10.3762/bjnano.16.35

Graphical Abstract
  • water electrolysis catalyst than IrO2 [32]. The combination and composition of elements are important to achieve superior properties to those of pure metal nanoparticles. The typical method for nanoparticles synthesis such as chemical reduction with thermal equilibrium reaction is basically limited to
PDF
Album
Full Research Paper
Published 27 Mar 2025
Other Beilstein-Institut Open Science Activities