Search results

Search for "wetting" in Full Text gives 173 result(s) in Beilstein Journal of Nanotechnology.

Bioinspired nanofilament coatings for scale reduction on steel

  • Siad Dahir Ali,
  • Mette Heidemann Rasmussen,
  • Jacopo Catalano,
  • Christian Husum Frederiksen and
  • Tobias Weidner

Beilstein J. Nanotechnol. 2025, 16, 25–34, doi:10.3762/bjnano.16.3

Graphical Abstract
  • , which serve as a barrier against unwanted wetting [4][5]. Collembola breathe through their skin and, since they live in humid environments, need to retain air near their skin for survival in diverse habitats [6] (Figure 1A,B). Drawing inspiration from Collembola, our study delves into the potential
  • only 4.0 ± 1.5 mg. This corresponds to a scale reduction of 75.5% by the SNF coating. Ostensibly, the non-wetting properties of the SNF films prevent attachment and growth of scale. Calcium carbonate scale formation starts with crystallization nuclei, small clusters of ions which can homogeneously form
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • tiny structures belong to two main functional types. They are either mechanosensory and belong to the peripheral nervous system or they have no sensing role and serve to prevent wetting of, for example, wings and legs [41][42][43][44]. Other functions include the detection of airflow patterns, for
PDF
Album
Review
Published 05 Nov 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • differences of the wetting properties [34]. At moderate oscillation amplitudes, intimate tip–sample contact is avoided, and the energy dissipation takes place at the lower turning point of the oscillation cycle because of the formation and rupture of liquid necks [35][36][37]. When operating in this less
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • the rest of the structure is hydrophobic. The combination of these different wetting properties enables the plants to maintain a stable layer of air while underwater. The hydrophilic tips pin the water surface so that it does not penetrate the fiber array and, thus, trap an air layer directly on the
  • structures on their limbs, which help them locomote on the water surface [47]. Similarly, groups of ants form rafts to float on water and escape flooded regions [48]. This function relies on the wetting properties of their cuticle and its substructures. When underwater, spiders, such as the diving bell
PDF
Album
Review
Published 06 Jun 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • ring electrode for mechanical excitation. The QTF surface features a set of three metallic electrodes evaporated on it. Their chemical composition has been characterized by EDS as consisting of a ≃200 nm thick layer of Au on a thinner chromium layer to favor the adhesion and wetting of Au. The massive
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • increase in CA on the nanopillar and nanohole substrates may be due to either a Wenzel- or a Cassie-type of wetting [22]. To improve wetting on the substrates, we treated our samples with mild O2 plasma before laminin incubation. After plasma treatment, all samples became hydrophilic (CA < 80°), with the
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

The origin of black and white coloration of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae)

  • Manuela Rebora,
  • Gianandrea Salerno,
  • Silvana Piersanti,
  • Alexander Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 496–508, doi:10.3762/bjnano.14.41

Graphical Abstract
  • high water buoyancy and floating ability, and during emergence from the aquatic pupa, preventing adults from wetting and allowing them to fly away from the water surface without being trapped by capillary forces. The scales on the mosquito body can also produce a colouration pattern, which is often
PDF
Album
Full Research Paper
Published 17 Apr 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • attributed, 0 corresponding to perfect adhesion. Figure 6 shows the results for both the Ag@PEG600DA (Figure 6a) and Ag@PEG600DA/PETIA (Figure 6b) coatings. In both cases, excellent adhesion was observed (value of 0), which can be explained by the remarkable textile wetting properties of the photosensitive
PDF
Album
Full Research Paper
Published 12 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • led to the development of mimetic strategies [18][19][20][21], which require the combination of wetting and dewetting properties used by the beetle. The hydrophobic region, as is also the case for the cactus, is fundamental for the mobility of water. Water presents other kinds of anomalous behavior in
PDF
Album
Full Research Paper
Published 02 Jan 2023

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • adhesion systems. They are inspired by the feet of beetles, flies, spiders and geckos and have been shown to strongly enhance adhesion [37][38][39][40][41][42][43][44][45][46][47][48][49][50][51]. But these surfaces were also shown to be the structure of choice to produce omniphobic surfaces, their wetting
PDF
Album
Full Research Paper
Published 21 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • via hierarchically organised hydrophobic surface structures when forced under water [3][21][22]. There are three levels of protection against wetting in Collembola: (i) a hairy cover consisting of bristles with water pinned to the tips (Figure 3a), (ii) nanoscopic hexagonal or rhombic comb structures
  • several levels of protection against wetting: (a) a hairy cover of bristles of Sinella tenebricosa, (b) nanoscopic hexagonal or rhombic comb structures formed by interconnected ridges in which gas bubbles can be trapped (Ceratophysella scotica) and (c) still smaller, very special structural elements with
PDF
Album
Perspective
Published 17 Nov 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • the interaction between electrolyte and the electrode surface. We probed the water wetting ability of supported ACC-2 and supportless ACC-2* by measuring the water contact angles (Figure S8a,b, Supporting Information File 1). The rGO-supported ACC-2 material showed a higher water wettability (14 ± 1
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • (e.g., applied surfactants) interactions on natural leaf surfaces, the chemical composition and the wetting behavior should be the same in both. Therefore, the morphology, chemistry, and wetting properties of natural and artificial surfaces with recrystallized wax structures were analyzed by scanning
  • acids. The main component was 1-octacosanol. The waxes recrystallized as three-dimensional structures on the artificial surfaces. The three tested wetting parameters resembled the ones of the natural surface, providing an artificial surface with the chemical information of epicuticular waxes and the
  • wetting properties of a natural leaf surface. Keywords: recrystallization; surface properties; wax composition; wetting; wheat; Introduction Cuticle One of the largest interfaces on earth is formed by thin layers that are a few nanometers to micrometers thin, namely the wax layers of the plant cuticle
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • ZnTPP directly on the bare Fe(001) surface results in a completely disordered film [47], therefore the passivation of Fe(001) with oxygen is a crucial step to obtain a suitable molecular buffer layer. Since porphyrins molecules lie flat on the Fe(001)–p(1 × 1)O surface, the ZnTPP wetting layer provides
  • with previous results [46]. This order extends over large domains (hundreds of square nanometers wide) and tends to disappear as soon as additional molecules are deposited on top of the wetting layer. The formation of a well-ordered ZnTPP film with (5 × 5) periodicity is confirmed by the STM image
  • ) unit cell. In the lower right corner, the crystallographic directions are indicated. (a) Large-scale STM image of a C60 wetting layer deposited on C60/Zn-TPP/Fe(001)-p(1 × 1)O. In the left top corner of the image, the ZnTPP layer is visible. (b) Zoomed image of the region marked by a dashed square in
PDF
Album
Full Research Paper
Published 30 Aug 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • oxide [10]. This effect has also been used to trigger the reaction of thin oxide films at the liquid–vapor interface with liquid gallium alloys [11]. While the liquid–vapor interface of liquid gallium-based alloys has been well investigated, the wetting of liquid gallium alloys on different substrates
  • drop is not disrupted during application onto a substrate. In contrast, when the oxide skin breaks, new oxide forms at the solid–liquid interface with a substrate, which results in adhesion. Also, the wetting of a liquid Ga–In alloy has been related to the adsorption energy of gallium on three
  • different substrates (steel, gold, and Al) [13], with the wetting becoming better as the adsorption energy of gallium onto the substrate becomes more negative. In the case of Fe and Cu substrates, it was observed that liquid gallium reacts with the substrate to form an intermetallic layer at the gallium
PDF
Album
Full Research Paper
Published 23 Aug 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • the second scanning cycle the curve takes its characteristic shape. The value of the current peak changes slightly with time, which indicates that the electrode stabilizes after a short time. Small differences in the initial scan cycles may be due to the wetting of nanostructures. In Figure 3f, the
PDF
Album
Full Research Paper
Published 03 May 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • application as an oil–water separators, owing to the high surface porosity, submicrometer pore sizes, high permeability, and the ability to control the membrane hydrophobicity/hydrophilicity effortlessly. The nanoscale surface roughness of the nanofibers of the membrane has a direct impact on the wetting
PDF
Album
Review
Published 31 Jan 2022

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • limited, thus leading to the reduction of water slippage. Figure 3 shows that although water shows similar wetting properties on surfaces of boron nitride and graphene, the friction coefficient (or slip length) of water on boron nitride is much larger (or lower) than that on graphene due to a more
PDF
Album
Review
Published 17 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • active sites, that is, triple-phase contact points. These contact points of air, solid catalyst, and liquid electrolyte, need to be high in number or area. This entails a partial wetting of the electrode to ensure accessibility of the sites for gaseous oxygen. From a more industrial perspective
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • wetting, double layered structure, and hydrogen bonding is needed as it will allow chemists to controllably manipulate the nanoscale growth [91]. While, in-depth studies (experimental and computational) regarding these aspects are yet to come, several significant preliminary studies have been reported
PDF
Album
Review
Published 18 Aug 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • -quality, conformal thin films with low resistivity, to avoid many of the typical failure mechanisms such as electromigration [42][43]. This means that 3D migration of atoms (agglomeration) should be inhibited, while 2D growth (wetting) should be promoted. In contrast, in catalysis applications the ratio
  • favourable metal–substrate interaction should inhibit migration of atoms to form 3D structures during thin film deposition, resulting in a 2D film suitable for interconnect applications, without the need of an additional liner material to promote wetting. This is the subject of further work and will include
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • include the formation of surface steps [28][29][30][31], faceting of the surface [32][33][34][35][36][37], elimination of instability of surface morphology caused by stress and wetting of the substrate [38][39][40][41], the evolution of contact irregularities in switches of microelectromechanical systems
PDF
Album
Letter
Published 13 Jul 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • spontaneous shape transition, from regular islands to elongated nanowires, upon high-temperature annealing of a thin Mn wetting layer evaporated on Ge(111). We demonstrate that 4.5 monolayers is the critical thickness of the Mn layer, governing the shape transition to wires. A small change around this value
  • formation of quantum wires [35]. In this method, wires are obtained via epitaxial growth of a strained wetting layer followed by annealing at high temperature. However, only few studies have been dedicated to strain-induced elongation mechanisms leading to the formation of semiconducting nanowires, such as
  • report a spontaneous morphology modification, from islands to nanowires, in Mn-rich GeMn nanoparticles. The growth is initiated via reaction of a thin Mn wetting layer, evaporated by MBE, with a Ge(111) substrate. Morphology and microstructure of the NWs have been studied by scanning electron microscopy
PDF
Album
Full Research Paper
Published 28 Apr 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • molecular wetting layers [15] and two-dimensional materials, such as graphene [16][17], hBN [11][18], or even organic layers [19]. Recently, it has been proposed that a monolayer of transition metal dichalcogenides, for example, MoS2, may play a similar role [4][20][21]. Similarly, it has been reported that
  • wetting layer on TiO2 [67]. As indicated in Figure 3b, the STM-measured height of the molecular island reaches approximately 1.05 nm. This is in good agreement with previous reports indicating the STM height of an upright-oriented phthalocyanines to be in the range from 1.10 nm [66] to 1.16 nm [67]. This
  • , therefore, shall correspond to the half of the unit cells of the α and the β phase. While the majority of phthalocyanines exhibits alternate rotation of the molecules within neighboring columns, there are examples of structures, in which the molecules are rotated uniformly, that is, CuPc on a wetting layer
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • quantum-mechanical transparency of the interface, TF, was assigned. Here, they considered the effect of the mutual solubility of the metals (of a superconductor and a ferromagnet) on the quantum-mechanical transparency. The transparency parameter of the interface for completely non-wetting metals, such as
  • is a high risk of mutual diffusion and the formation of a thick “dead” layer, which also suppresses the transparency of the S/F interface [20]. In the case of materials wetting and limited mutual solubility (as in niobium–nickel and niobium–cobalt, with solubility of about 5% at room temperature
PDF
Album
Full Research Paper
Published 24 Nov 2020
Other Beilstein-Institut Open Science Activities