Supporting Information
Supporting Information File 1: Experimental methods including detailed synthetic procedures, compound characterization data, and DFT calculations. | ||
Format: PDF | Size: 1.9 MB | Download |
Supporting Information File 2: Crystallographic information file of compound 3a. | ||
Format: CIF | Size: 2.2 MB | Download |
Supporting Information File 3: Crystallographic information file of compound 6b. | ||
Format: CIF | Size: 2.5 MB | Download |
Cite the Following Article
Regioselectively α- and β-alkynylated BODIPY dyes via gold(I)-catalyzed direct C–H functionalization and their photophysical properties
Takahide Shimada, Shigeki Mori, Masatoshi Ishida and Hiroyuki Furuta
Beilstein J. Org. Chem. 2020, 16, 587–595.
https://doi.org/10.3762/bjoc.16.53
How to Cite
Shimada, T.; Mori, S.; Ishida, M.; Furuta, H. Beilstein J. Org. Chem. 2020, 16, 587–595. doi:10.3762/bjoc.16.53
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 761.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Saracoglu, N. Ag/Au-Catalyzed Functionalization of Heterocycles Through C–H Activation. Topics in Heterocyclic Chemistry; Springer Nature Switzerland, 2024; pp 327–410. doi:10.1007/7081_2024_73
- Kumar, B.; Bhatta, A.; Saraf, P.; Pandurang, T. P.; Rangan, K.; Sarkar, M.; Mitra, S.; Kumar, D. BODIPY(aryl)iodonium salts in the efficient synthesis of diversely functionalized BODIPYs and selective detection of serum albumin. Organic & biomolecular chemistry 2024, 22, 3405–3414. doi:10.1039/d4ob00336e
- Da Lama, A.; Pérez Sestelo, J.; Sarandeses, L. A.; Martínez, M. M. Synthesis and Photophysical Properties of β-Alkenyl-Substituted BODIPY Dyes by Indium(III)-Catalyzed Intermolecular Alkyne Hydroarylation. The Journal of organic chemistry 2024, 89, 4702–4711. doi:10.1021/acs.joc.3c02951
- Kapur, M.; Chand, T. Transition-Metal-Catalyzed C–H Activation Reactions for the Creation and Modification of Organic Fluorophores. Synthesis 2024, 56, 1505–1540. doi:10.1055/a-2262-9575
- Shimada, T.; Kaneko, T.; Notsuka, Y.; Kim, J.; Mori, S.; Shimizu, S.; Kim, J.; Kamada, K.; Kim, D.; Yamaoka, Y.; Furuta, H.; Ishida, M. Molecular Design for Stable Near-Infrared-II Two-Photon Excitation-Induced Photoacoustic Contrast Agents Based on Donor-Substituted BODIPYs. ACS Applied Optical Materials 2024, 2, 211–219. doi:10.1021/acsaom.3c00400
- Li, S.; Hu, X.; Li, X. Selectfluor-Mediated Azoles Functionalization of BODIPY. Russian Journal of General Chemistry 2023, 93, 937–941. doi:10.1134/s1070363223040229
- Nguyen, Y. T.; Shin, S.; Kwon, K.; Kim, N.; Bae, S. W. BODIPY-based fluorescent sensors for detection of explosives. Journal of Chemical Research 2023, 47. doi:10.1177/17475198231168961
- Prabagar, B.; Shi, Z. doi:10.1002/9781119774167.ch2
- Le Du, E.; Waser, J. Recent progress in alkynylation with hypervalent iodine reagents. Chemical communications (Cambridge, England) 2023, 59, 1589–1604. doi:10.1039/d2cc06168f
- Gupta, A.; Chakraborty, S.; Ghosh, D.; Ramakrishnan, R. Data-driven modeling of S0 → S1 excitation energy in the BODIPY chemical space: High-throughput computation, quantum machine learning, and inverse design. The Journal of chemical physics 2021, 155, 244102. doi:10.1063/5.0076787
- Dzyuba, S. V. BODIPY Dyes as Probes and Sensors to Study Amyloid-β-Related Processes. Biosensors 2020, 10, 192. doi:10.3390/bios10120192