This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2024, 20, 2946–2953, doi:10.3762/bjoc.20.247
Graphical Abstract
Scheme 1: Generation of gem-difluorovinyl and trifluorovinyl Michael acceptors and their use in the synthesis...
Scheme 2: Formation of α,β-difluorinated and α-fluorinated α,β-unsaturated amides.
Scheme 3: Formation of β-fluorinated and nonfluorinated α,β-unsaturated amides.
Scheme 4: Michael addition of 1a–d with tert-BuLi.
Scheme 5: Michael addition of 2a–d with tert-BuLi.
Scheme 6: Formation of N-methylation products.
Beilstein J. Org. Chem. 2023, 19, 434–439, doi:10.3762/bjoc.19.33
Scheme 1: Synthetic strategy towards 5 and 7.
Scheme 2: Synthesis of 9 and 11. (a) R = -CH3; (b) R = -CH(CH3)2; (c) R = -CH2CH(CH3)2; (d) R = -CH(CH3)CH2CH3...
Figure 1: Dixon plot for the hydrolysis of Gly-Phe-pNA substrate catalyzed by bovine cathepsin C in the prese...
Beilstein J. Org. Chem. 2020, 16, 756–762, doi:10.3762/bjoc.16.69
Figure 1: Chemical structure of PyFluor, PBSF and SulfoxFluor.
Scheme 1: Synthesis of 5.
Figure 2: Chemical structure bases.
Scheme 2: Synthesis of 11.
Scheme 3: Synthesis of 13 and 14.
Figure 3: Molecular structure of compound (1R,2S)-14c (ORTEP image).
Scheme 4: Synthesis of 15. aConditions are given in the Experimental section.