This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2024, 20, 3174–3181, doi:10.3762/bjoc.20.262
Graphical Abstract
Figure 1: Examples of bioactive tetrahydropyridazine derivatives.
Figure 2: Linear and cyclic peptides incorporating the dehydropiperazic acid moiety.
Figure 3: Piperazic acid and analogues and target trifluoro/difluoromethylated tetrahydropyridazine acids.
Scheme 1: Reported syntheses of tetrahydropyridazine ester derivatives.
Figure 4: Synthetic strategy to obtain fluorinated tetrahydropyridazines from difluoro- or trifluoromethylate...
Scheme 2: Synthesis of fluorinated hydrazones 3a–f.
Scheme 3: Allylation of fluorinated hydrazones 3a–f to obtain 5a–f.
Scheme 4: Oxidation of hydrazines 5a–f to obtain hydrazones 6a–f.
Scheme 5: Intramolecular cyclization of compounds 6a–f to obtain tetrahydropyridazines 7a–f.
Scheme 6: Preparation of tripeptides 8e, 8e’, 8f, and 8f’. Yields refer to the yield over 2 steps.
Figure 5: X-ray diffraction of compound 8f.
Beilstein J. Org. Chem. 2017, 13, 2169–2178, doi:10.3762/bjoc.13.217
Scheme 1: Retrosynthesis of the Pro–Pro DKP framework.
Scheme 2: Coupling with N-hydroxysuccinimide-activated amino acids.
Scheme 3: Synthesis of Pro–Pro DKP.
Scheme 4: Synthesis of substituted Pro–Pro DKP 15a.
Scheme 5: Potential isomers yielded by cyclization of 16.
Figure 1: Optimized geometries for the two conformers presenting interactions with either Ca (16a) or Cb (16b...
Figure 2: Optimized geometries of the extrema located along the pathway for formation of 15a with explicit pa...
Figure 3: Optimized geometries of the extrema located along the pathway for formation of 15b with explicit pa...
Figure 4: Optimized geometries for the transition states associated to alternate position of the methanol mol...
Scheme 6: Synthesis of diketopiperazine 19.