This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2018, 14, 2404–2410, doi:10.3762/bjoc.14.217
Graphical Abstract
Figure 1: Energy-minimized models of the two macrocycles derived from dC (left) and dU (right) acquired by MM+...
Scheme 1: Synthesis of the 5’-azido-2’,5’-dideoxyribonucleoside 2, the macrocycle 4 and the dimeric compounds ...
Scheme 2: Synthesis of 5’-azido-2’,5’-dideoxyribonucleoside 7 and nucleoside macrocycle 8.
Figure 2: A perspective view of 8 showing the atomic numbering scheme. Displacement ellipsoids are drawn at t...
Figure 3: The crystal packing of 8 shows the intramolecular hydrogen-bonding network (projection parallel to ...
Figure 4: N- and S-conformation for cyclonucleoside 8. B corresponds to nucleobase. ax: axial; eq: equatorial....
Beilstein J. Org. Chem. 2016, 12, 2588–2601, doi:10.3762/bjoc.12.254
Scheme 1: Enzymatic synthesis of 2-deoxy-β-D-ribofuranosides 1b–5b of the heterocyclic bases 1a–5a. Regents a...
Scheme 2: Phosphorolysis of nucleosides 1b–5b and related pyrimidine nucleosides (2’-deoxyuridine, thymidine,...
Figure 1: Phosphorolysis of a number of 2’-deoxy-β-D-ribofuranosides of uracil and thymine, and their 6-aza d...
Figure 2: Phosphorolysis of 2′-deoxyuridine and thymidine, their 4- and 2-thio derivatives and 6-aza-2-thioth...
Figure 3: Supposed monoanionic forms of 4-thiouracil and 2-thiouracil in aqueous medium [48,49].
Figure 4: Phosphorolysis of 6-aza-2-thiothymidine (5b), 4-thiothymidine (11a) and 4-thio-2′-deoxyuridine (1b)...
Figure 5: Structures of 2-thiopyrimidine(9–12) and 5-azacytidine (13 and 14) nucleosides.
Figure 6: Energy minimized structures of N3-(β-D-ribofuranosyl)adenine (left) and 5-aza-2′-deoxycytidine (rig...
Figure 7: Structures of 6-azapyrimidines 15–18 tested for E. coli UP and TP.
Figure 8: Geometry optimized structures (PM3 method) of 5-tert-butyl-6-azauracil (15) and 5-phenyl-6-azauraci...
Figure 9: The UV spectra of 4-thio-2′-deoxyuridine (1b).
Figure 10: The UV spectra of 6-aza-2-thiothymidine (5b).
Beilstein J. Org. Chem. 2014, 10, 1657–1669, doi:10.3762/bjoc.10.173
Figure 1: The structures of purine nucleosides studied in the chemoenzymatic synthesis and in a cascade one-p...
Scheme 1: Chemical synthesis of 2-deoxy-2-fluoro-α/β-D-arabinofuranose-1-phosphates (12a,b). Reagents and con...
Figure 2: The structures of 1-phosphates of α-D-arabinofuranose (13a; AraFur-1P) and β-D-arabinopyranose (13b...
Figure 3: Geometry optimization of 1-phosphates of 2-deoxy-2-fluoro-α-D-arabinofuranose (12a) and the β-anome...
Figure 4: Progress of the formation of 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-2-chloroadenine (1), 2-amino...
Figure 5: Clofarabine content in the reaction mixture vs time (hours) of the reaction.
Scheme 2: Suggested mechanism of purine nucleoside synthesis catalyzed by E. coli purine nucleoside phosphory...
Figure 6: Progress of the formation of β-D-arabinofuranosides and 2-deoxy-2-fluoro-β-D-arabinofuranosides of ...
Figure 7: Tautomeric structures of 5-aza-7-deazaguanine (17).
Figure 8: Progress of the formation of clofarabine (1), 9-(β-D-arabinofuranosyl)-2-chloroadenine (6), 9-(β-D-...