Search results

Search for "Grignard reagent" in Full Text gives 107 result(s) in Beilstein Journal of Organic Chemistry.

Synthetic strategies of phosphonodepsipeptides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2021, 17, 461–484, doi:10.3762/bjoc.17.41

Graphical Abstract
  • were in situ generated from the hydroxypeptide esters 46 with a Grignard reagent (Scheme 8) [24]. To minimize the side reactions of 1-aminoalkylphosphonochloridates, a convenient method for the synthesis of phosphonodepsipeptides was described. The N-Cbz-protected 2-aminoalkylphosphinates 50 were
PDF
Album
Review
Published 16 Feb 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • –dehydration reactions, via intermediate anti-aldol (−)-67 (Scheme 8). The addition of Grignard reagent to the enone (E)-(−)-68 occurred anti to the group TpMo(CO)2 to give adduct (E)-69, which was used in the next step without purification. The treatment of this adduct with HCl in dioxane promoted
PDF
Album
Review
Published 05 Jan 2021

3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly Ithomia salapia

  • Florian Mann,
  • Daiane Szczerbowski,
  • Lisa de Silva,
  • Melanie McClure,
  • Marianne Elias and
  • Stefan Schulz

Beilstein J. Org. Chem. 2020, 16, 2776–2787, doi:10.3762/bjoc.16.228

Graphical Abstract
  • ). A Wittig reaction with pentylphosphonium bromide resulted in bromoalkene 21 in a 9:1 Z/E-mixture. In the following step, the Grignard reagent of 21 was converted into the respective Gilman cuprate with Cu(I)I for the selective reaction with the epoxide function of (S)-22 [34]. The hydroxyester 23
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2020

Disposable cartridge concept for the on-demand synthesis of turbo Grignards, Knochel–Hauser amides, and magnesium alkoxides

  • Mateo Berton,
  • Kevin Sheehan,
  • Andrea Adamo and
  • D. Tyler McQuade

Beilstein J. Org. Chem. 2020, 16, 1343–1356, doi:10.3762/bjoc.16.115

Graphical Abstract
  • fresh organomagnesium reagents on a discovery scale and will do so independent from the operator’s experience in flow and/or organometallic chemistry. Keywords: Knochel–Hauser base; lithium chloride; magnesium; on-demand; packed-bed reactors; plug and flow reactor; synthesizer; turbo Grignard reagent
  • (1 M) at flow rates up to 15 L/h [42]. However, in these publications, alkyl chloride substrates, which are generally more cost-effective but less reactive than the corresponding bromide or iodide, are limited. Also, the use of a LiCl solution as the reaction medium to increase the Grignard reagent
  • reutilization. For optimal results, 2 equivalents of Mg* (chips/powder, 1:1) and 2 equivalents of LiCl must be used at a single time. System scope: The bicomponent column was employed to obtain the turbo Grignard reagent [45] as well as sec- and n-butylmagnesium chloride–lithium chloride complexes as THF
PDF
Album
Supp Info
Full Research Paper
Published 19 Jun 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • an attempt to determine the existence of radical behavior of PhMe2Si-MgMe (2), they studied the reaction of this Grignard reagent with dodecyl tosylate (1, X = OTs), which led to the formation of dodecyl silane 3 (20%) along with tridecane 4 (3%) and dodecane 5 (36%). Similarly, dodecyl bromide (1, X
  • Suginome’s reagent along with LiCl, which completely overrode the need for a Grignard reagent and led to good chemical yields of the desired product (e.g., 272). In one case examined, a bulky silyl Grignard reagent gave the linear silyl derivative selectively. In addition, a quaternary carbon bearing the
PDF
Album
Review
Published 15 Apr 2020

Synthesis of six-membered silacycles by borane-catalyzed double sila-Friedel–Crafts reaction

  • Yafang Dong,
  • Masahiko Sakai,
  • Kazuto Fuji,
  • Kohei Sekine and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2020, 16, 409–414, doi:10.3762/bjoc.16.39

Graphical Abstract
  • , the transformation of the amino groups in phenoxasilin 3a into phenyl groups was carried out (Scheme 5). First, the ammonium salt 4 was prepared by treating 3a with MeOTf followed by a palladium-catalyzed cross-coupling reaction with the Grignard reagent (PhMgBr) that afforded the desired diphenylated
PDF
Album
Supp Info
Letter
Published 17 Mar 2020

Formal preparation of regioregular and alternating thiophene–thiophene copolymers bearing different substituents

  • Atsunori Mori,
  • Keisuke Fujita,
  • Chihiro Kubota,
  • Toyoko Suzuki,
  • Kentaro Okano,
  • Takuya Matsumoto,
  • Takashi Nishino and
  • Masaki Horie

Beilstein J. Org. Chem. 2020, 16, 317–324, doi:10.3762/bjoc.16.31

Graphical Abstract
  • to afford the regioregular polythiophene in which 2,5-dihalo-3-substituted thiophene 1 is employed as a monomer precursor, converting to the corresponding organometallic monomer by a halogen−magnesium exchange reaction with a Grignard reagent. The employment of 1 leading to polythiophene has been
PDF
Album
Full Research Paper
Published 05 Mar 2020

Combination of multicomponent KA2 and Pauson–Khand reactions: short synthesis of spirocyclic pyrrolocyclopentenones

  • Riccardo Innocenti,
  • Elena Lenci,
  • Gloria Menchi and
  • Andrea Trabocchi

Beilstein J. Org. Chem. 2020, 16, 200–211, doi:10.3762/bjoc.16.23

Graphical Abstract
  • one-pot, resulting in the generation of the stereochemically dense epoxyalcohol 37 in 68% overall yield. The treatment of compound 5 with EtMgBr as a Grignard reagent in the presence of CeCl3 gave the corresponding tertiary alcohol 38 with similar stereochemical features as of 36 in the formation of
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

A new approach to silicon rhodamines by Suzuki–Miyaura coupling – scope and limitations

  • Thines Kanagasundaram,
  • Antje Timmermann,
  • Carsten S. Kramer and
  • Klaus Kopka

Beilstein J. Org. Chem. 2019, 15, 2569–2576, doi:10.3762/bjoc.15.250

Graphical Abstract
  • added the double Grignard reagent 4 to methyl esters 5 [26]. A similar approach was established by Lavis, herein electrophiles (anhydrides or esters) were added to lithium or magnesium organyls 4 [27]. Johnsson and co-workers could establish dye formation by addition of aryllithium 7 to the silicon
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • source and behaves as a nucleophile. The electrophile, such as an alkyl chain or an aryl ring with halides or sulfonates, reacts with the fluoride source (Scheme 1a). On the other hand, in the electrophilic fluorination, the nucleophile may be a carbon anion (e.g., Grignard reagent), a compound with
PDF
Album
Review
Published 23 Sep 2019

N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds

  • Iwona E. Głowacka,
  • Aleksandra Trocha,
  • Andrzej E. Wróblewski and
  • Dorota G. Piotrowska

Beilstein J. Org. Chem. 2019, 15, 1722–1757, doi:10.3762/bjoc.15.168

Graphical Abstract
PDF
Album
Review
Published 23 Jul 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2019

Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives

  • Mikhail V. Makarov and
  • Marie E. Migaud

Beilstein J. Org. Chem. 2019, 15, 401–430, doi:10.3762/bjoc.15.36

Graphical Abstract
  • order to manipulate the NAD+ pathway in mammalian cells and tissues. The key step in the synthesis of the NMN analogues 39–41 is the activation of the 5′-hydroxy group of the NRH acetonide 42 with a Grignard reagent, to produce the corresponding magnesium alkoxide. As illustrated by the synthesis of the
PDF
Album
Review
Published 13 Feb 2019

Reusable and highly enantioselective water-soluble Ru(II)-Amm-Pheox catalyst for intramolecular cyclopropanation of diazo compounds

  • Hamada S. A. Mandour,
  • Yoko Nakagawa,
  • Masaya Tone,
  • Hayato Inoue,
  • Nansalmaa Otog,
  • Ikuhide Fujisawa,
  • Soda Chanthamath and
  • Seiji Iwasa

Beilstein J. Org. Chem. 2019, 15, 357–363, doi:10.3762/bjoc.15.31

Graphical Abstract
  • DIBAL-H with benzylamine afforded the desired product 3 in 44% yield with 95% ee (Scheme 2, reaction 1) [52]. We then investigated the arylation of chiral cyclopropylamide 2f with Grignard reagent PhMgBr (Scheme 2, reaction 2). Only 37% of cyclopropyl ketone 4 were observed at room temperature with
PDF
Album
Supp Info
Letter
Published 06 Feb 2019

Regioselective addition of Grignard reagents to N-acylpyrazinium salts: synthesis of substituted 1,2-dihydropyrazines and Δ5-2-oxopiperazines

  • Valentine R. St. Hilaire,
  • William E. Hopkins,
  • Yenteeo S. Miller,
  • Srinivasa R. Dandepally and
  • Alfred L. Williams

Beilstein J. Org. Chem. 2019, 15, 72–78, doi:10.3762/bjoc.15.8

Graphical Abstract
  • Grignard reagent to add regioselectively to give 1,2-dihydropyrazine 3a. DFT calculations support the observations that the isolated regioisomer we obtained was the result of a thermodynamically favored 1,2-addition over a 1,6-addition [9]. It has also been shown that TMS-ketene acetals add selectively to
  • conversion of 1,2-dihydropyrazines to Δ5-2-oxopiperazines, we decided to develop a one-pot approach towards their synthesis (Table 3). As described above, we first synthesized the phenyl-substituted 1,2-dihydropyrazine 4b by adding a phenyl Grignard reagent to benzyloxy-substituted N-acylpyrazinium salt in
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Nucleofugal behavior of a β-shielded α-cyanovinyl carbanion

  • Rudolf Knorr and
  • Barbara Schmidt

Beilstein J. Org. Chem. 2018, 14, 3018–3024, doi:10.3762/bjoc.14.281

Graphical Abstract
  • that 13 had transferred its proton to the emerging, thermally stable [4] cleavage product 2K faster than to the residual PhCH2K (perhaps a problem of slow mixing). On the other hand, deprotonation of 13 by the Grignard reagent MeMgBr in THF was complete (quantitative CH4 evolution) within 20 min at 0
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2018

Synergistic approach to polycycles through Suzuki–Miyaura cross coupling and metathesis as key steps

  • Sambasivarao Kotha,
  • Milind Meshram and
  • Chandravathi Chakkapalli

Beilstein J. Org. Chem. 2018, 14, 2468–2481, doi:10.3762/bjoc.14.223

Graphical Abstract
  • . Then, the cyclized product was subjected to the oxidation sequence with pyridinium chlorochromate (PCC) to generate cylophane derivative 115 in 75% yield (Scheme 17). Similarly, treatment of dialdehyde 113 with a freshly prepared Grignard reagent derived from 4-bromobut-1-ene (116) afforded dialkenyl
PDF
Album
Review
Published 21 Sep 2018

Non-metal-templated approaches to bis(borane) derivatives of macrocyclic dibridgehead diphosphines via alkene metathesis

  • Tobias Fiedler,
  • Michał Barbasiewicz,
  • Michael Stollenz and
  • John A. Gladysz

Beilstein J. Org. Chem. 2018, 14, 2354–2365, doi:10.3762/bjoc.14.211

Graphical Abstract
  • (12) in 94% yield using triphosgene, a standard reagent for the chlorination of phosphorus–hydrogen bonds [49]. Since a direct reaction with an excess of the Grignard reagent BrMg(CH2)6CH=CH2 would give 11, a dead end, initial conversion to the bis(borane) adduct 12·2BH3 was envisioned. However
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2018

Hydroarylations by cobalt-catalyzed C–H activation

  • Rajagopal Santhoshkumar and
  • Chien-Hong Cheng

Beilstein J. Org. Chem. 2018, 14, 2266–2288, doi:10.3762/bjoc.14.202

Graphical Abstract
  • at the less-hindered carbon of the unsymmetrical alkynes, which causes the high regioselectivity. Later, they proved that the hydroarylation reaction was also feasible with benzoxazoles 5 to form alkenated products 6 using CoBr2, bis[(2-diphenylphosphino)phenyl] ether (DPEphos), Grignard reagent, and
  • . Based on the mechanistic studies, a possible reaction mechanism for the hydroarylation reaction was proposed in Scheme 9. The reaction begins with the generation of an ambiguous low-valent cobalt catalyst from the reaction of CoBr2, ligand and Grignard reagent, which gives the alkane and MgX2 as the by
  • (Scheme 20b) [66]. Moreover, the Co-catalyzed hydroarylation of styrene with ketimine or aldimine proceeded without Grignard reagent using Mg metal as the reductant [67]. Recently, N–H imines 9d were also employed for the hydroarylation reaction with styrenes, giving a branched-selective hydroarylation
PDF
Album
Review
Published 29 Aug 2018

Evaluation of dispersion type metal···π arene interaction in arylbismuth compounds – an experimental and theoretical study

  • Ana-Maria Preda,
  • Małgorzata Krasowska,
  • Lydia Wrobel,
  • Philipp Kitschke,
  • Phil C. Andrews,
  • Jonathan G. MacLellan,
  • Lutz Mertens,
  • Marcus Korb,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Alexander A. Auer and
  • Michael Mehring

Beilstein J. Org. Chem. 2018, 14, 2125–2145, doi:10.3762/bjoc.14.187

Graphical Abstract
  • ][47]. A more convenient synthetic route makes use of the Grignard reagent phenylmagnesium bromide and its reaction with bismuth trichloride [48]. Following this approach with slight modifications provides Ph3Bi with a yield of more than 80%. Crystallization from EtOH gave single crystals of the
  • Wang et al. [52]. Compound 3 was obtained as colorless block-shaped crystals in yields of 83%. While our work was in progress, a crystal structure of 3 was reported by Gagnon et al. The authors confirmed the formation of 3 from the corresponding Grignard reagent and BiCl3 upon crystallization at 20 °C
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • intermediate, 130, formed via the coordination of the Grignard reagent with ether was proposed to be operative in the reaction (Scheme 22). 2.2.4. Miscellaneous reactions: a. Halogenated benzo[7]annulenes and their synthetic potentials: In 1978, Föhlisch’s group reported the synthesis and ambident reactivity
PDF
Album
Review
Published 23 May 2018

Cobalt-catalyzed directed C–H alkenylation of pivalophenone N–H imine with alkenyl phosphates

  • Wengang Xu and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2018, 14, 709–715, doi:10.3762/bjoc.14.60

Graphical Abstract
  • demonstrated that the combination of a cobalt–N-heterocyclic carbene (NHC) catalyst and a Grignard reagent allows for the arene C–H functionalization with organic halides and pseudohalides under the assistance of nitrogen directing groups [17][22][23][24][25][26][27]. In this connection, Ackermann developed a
  • cycle illustrated in Scheme 5. An alkylcobalt species A, generated from the cobalt precatalyst and the Grignard reagent, would undergo cyclometalation of magnesium alkylidene amide 1·MgX, generated from imine 1 and the Grignard reagent, to give a cobaltacycle species B while liberating an alkane R–H
  • Grignard reagent would furnish the alkenylation product 3·MgX and regenerate the species A. While the relationship between the ligand and the catalytic activity remains unclear, we speculate that a strong σ-donating ability of NHC ligands would facilitate the SET step among others. Conclusion In summary
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2018

Gram-scale preparation of negative-type liquid crystals with a CF2CF2-carbocycle unit via an improved short-step synthetic protocol

  • Tatsuya Kumon,
  • Shohei Hashishita,
  • Takumi Kida,
  • Shigeyuki Yamada,
  • Takashi Ishihara and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2018, 14, 148–154, doi:10.3762/bjoc.14.10

Graphical Abstract
  • . The latter could be constructed through ring-closing metathesis of the corresponding precursor, e.g., 4,4,5,5-tetrafluoroocta-1,7-diene 5, using a Grubbs' catalyst. The octa-1,7-diene 5 could be obtained through a nucleophilic addition of a vinylic Grignard reagent to the γ-keto ester 6. Lastly, the γ
  • , Scheme 2) and the results are summarized in Table 1. Thus, the treatment of 1.0 equiv of 7 with 2.0 equiv of 4-n-PrC6H4MgBr in THF at −78 °C overnight gave the corresponding γ-keto ester 6a in 85% isolated yield. Interestingly, although using an excess amount of Grignard reagent in this reaction, no
  • adducts by over-reactions, e.g., A, B, C, etc. (Figure 2a), were observed. The suppression of the formation of the over-reacted products A–C may be brought about by the following possible reaction pathway (Figure 2b): (i) the nucleophilic attack of the Grignard reagent on the ester carbonyl functionality
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2018

Recent progress in the racemic and enantioselective synthesis of monofluoroalkene-based dipeptide isosteres

  • Myriam Drouin and
  • Jean-François Paquin

Beilstein J. Org. Chem. 2017, 13, 2637–2658, doi:10.3762/bjoc.13.262

Graphical Abstract
  • O-deprotection, N-Fmoc-protection and oxidation to the carboxylic acid afforded the final Fmoc-Ala-ψ[(Z)-CF=CH]-Gly (49). Then, it was discovered that the diastereoselectivity of the addition of the Grignard reagent on 47 was enhanced when dimethylzinc (Me2Zn) was used as an additive (Table 1) [39
  • Grignard reagent to give 105. The last three steps (simultaneous deprotection of the amine and the alcohol in acidic conditions, Fmoc protection of the amine and oxidation of the alcohol into the corresponding carboxylic acid) led to the formation of three isosteres: Fmoc-Val-ψ[(E)-CF=C]-Pro (106a), Fmoc
PDF
Album
Review
Published 12 Dec 2017

Effect of uridine protecting groups on the diastereoselectivity of uridine-derived aldehyde 5’-alkynylation

  • Raja Ben Othman,
  • Mickaël J. Fer,
  • Laurent Le Corre,
  • Sandrine Calvet-Vitale and
  • Christine Gravier-Pelletier

Beilstein J. Org. Chem. 2017, 13, 1533–1541, doi:10.3762/bjoc.13.153

Graphical Abstract
  • organometallic reagents onto nucleoside aldehyde (Table 1), we decided to investigate the influence of the protecting groups of the uridine aldehyde on the stereochemical outcome of the nucleophilic addition of a Grignard reagent and we wish to report herein the results of our study. Results and Discussion We
  • uracil (Table 2, entry 8) did not significantly change the 5’R/5’S ratio. In both cases, using 3.5 equivalents of Grignard reagent was required to complete the reaction. In order to improve this reverse diastereoselectivity, we envisaged the use of a more bulky protecting group, such as the
  • diminished the yield to 55%. The bulkiness of the TIPS groups required the use of 5 equivalents of Grignard reagent to get a clean reaction and complete conversion of the starting material (Table 2, entry 14). The protection of the N-3 nitrogen with an allyl group was unfavorable and led to a 5’R/5’S 10:90
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2017
Other Beilstein-Institut Open Science Activities