Search results

Search for "alkyl radical" in Full Text gives 76 result(s) in Beilstein Journal of Organic Chemistry.

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • to manganese-catalyzed C–H fluorination [22], the resting Mn(III) catalyst is oxidized to O=Mn(V)–N3 complex 10B. Subsequently, an alkyl radical is generated upon H-abstraction by forming Mn(VI) intermediate 10C. The resulting alkyl radical is then trapped by Mn(IV)–N3 intermediate 10D, affording
  • to Mn(IV) takes place on the anodic surface, resulting in the formation of a trans-diazide Mn(IV) intermediate (Figure 5). The high-valent manganese(IV) complex is susceptible to HAT from the substrate 14, generating an alkyl radical [45][46]. Subsequently, further azide radical transfer from the
PDF
Album
Review
Published 26 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • on the solvent radical cage efficiency and, consequently, on the concentration and “life-time” of the alkyl free radicals generated after the solvent cage collapse. In the latter case, the alkyl radical needed more time to cyclize before engaging in another solvent cage. After a β–H abstraction, it
  • Markovnikov-type addition to generate a carbon-centered radical (B) that attacks the electron-deficient olefin (Scheme 22A). The newly formed alkyl radical (C) is then reduced by a Fe(II) species to an enolate (D) in an electron transfer (ET) step; a proton abstraction then delivers the hydroalkylated product
  • . A very clever experiment was designed by Baran and Holland [80] to corroborate the hypothesis of enolate D formation by the Fe(II) reduction of alkyl radical C. They performed an intermolecular hydroalkylation in the presence of benzaldehyde, and then trapped the putative enolate intermediate in an
PDF
Album
Review
Published 07 Jul 2021

Recent advances in the application of isoindigo derivatives in materials chemistry

  • Andrei V. Bogdanov and
  • Vladimir F. Mironov

Beilstein J. Org. Chem. 2021, 17, 1533–1564, doi:10.3762/bjoc.17.111

Graphical Abstract
  • for fine-tuning the properties of polymers due to the introduction of substituents of different structures in each of the thiophene rings. Using the example of OSCs consisting of a mixture of a polymer 25 and PC71BM (1:1.5, w/w), the effect of the length of the alkyl radical on the efficiency of such
  • containing a short n-butyl substituent at the isoindigo nitrogen atoms and the longest and most branched alkyl radical in the p-phenylene fragment (Scheme 18). Sun et al. showed that such a combination of substituents provides the best miscibility of the polymer with the acceptor fullerene component, which
  • electron donor/acceptor nature, the heterocyclic substituents, and the branching of the alkyl radical at the endocyclic nitrogen atom. Research on methods to obtain polymer isoindigo thin films and the use of additives will, in our opinion, significantly improve the efficiency of materials. In addition
PDF
Album
Review
Published 06 Jul 2021

Icilio Guareschi and his amazing “1897 reaction”

  • Gian Cesare Tron,
  • Alberto Minassi,
  • Giovanni Sorba,
  • Mara Fausone and
  • Giovanni Appendino

Beilstein J. Org. Chem. 2021, 17, 1335–1351, doi:10.3762/bjoc.17.93

Graphical Abstract
  • of alcohol byproducts confirmed the homolytic nature of the bond cleavage at C-4 and served to assess the half-life of the alkyl radical generated. To this purpose, the reaction of dicyanoglutarimides bearing a radical clock substituent (cyclopropylmethyl or 5-hexenyl) was investigated. The reaction
  • turn, this next abstracts hydrogen at C-3, regenerating the carrier and continuing the cycle. The C–H bond at position 3 of Guareschi imides is unusually weak. Hydrogen abstraction by an alkyl radical and formation of a hydrocarbon C–H bond is strongly exothermic (calculated enthalpy change: ≈20 kcal
PDF
Album
Supp Info
Review
Published 25 May 2021

Heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile: synthesis of diverse nitrogenous heterocyclic compounds

  • Guanglong Pan,
  • Qian Yang,
  • Wentao Wang,
  • Yurong Tang and
  • Yunfei Cai

Beilstein J. Org. Chem. 2021, 17, 1171–1180, doi:10.3762/bjoc.17.89

Graphical Abstract
  • recyclability, broad substrate scope, and high functional group tolerance (Scheme 1). Results and Discussion Our initial investigation focused on the CN-K photocatalyzed cascade alkyl radical addition/cyclization reaction of the N-arylallylamine 1a with tert-butyl N-hydroxyphthalimide (NHPI) ester (2a), a
  • classical alkyl radical precursor [57][58][59], to construct indoline product 4. Surprisingly, the solvent acetonitrile incorporated indoline 3a was observed as the major product (21%, Table 1, entry 1). Stimulated by this result, we questioned whether it would be possible to develop a general and efficient
  • experiments was performed (Scheme 7). The cyanomethylarylation reaction of 7a gave the desired compound 8a as the major product in 70% yield, along with 23% yield of the byproduct 15. The latter compound was generated through a cascade alkyl radical addition/cyclization of the NHPI ester 2d to N-aryl
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2021

Manganese/bipyridine-catalyzed non-directed C(sp3)–H bromination using NBS and TMSN3

  • Kumar Sneh,
  • Takeru Torigoe and
  • Yoichiro Kuninobu

Beilstein J. Org. Chem. 2021, 17, 885–890, doi:10.3762/bjoc.17.74

Graphical Abstract
  • homolytic cleavage of the weak Br–N3 bond in bromine azide [54][55]; (3) the bromine radical can also be generated from NBS with the formation of a succinimide radical; (4) alkyl radical intermediate A is then formed via hydrogen abstraction by the succinimidyl radical and/or azidyl radical [56][57]; (5
PDF
Album
Supp Info
Letter
Published 22 Apr 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • 104. Subsequently, alkyl radical 104 is captured by indole 98, giving benzyl radical 105. The alkylated indole derivative 100 and morpholine salts are provided via proton-coupled electron transfer (PCET) with EDA complex 102 formed by morpholine and 99 (Scheme 36). As a rare example of EDA
  • yield of this reaction can reach 7.6 g ⋅ h−1 on a gram scale, indicating that the flow step is promising in photochemistry. In 2019, Aggarwal and colleagues [38] employed Katritzky salt 119 as electron acceptor and HE 79 as electron donor to form an EDA complex, providing the corresponding alkyl radical
PDF
Album
Review
Published 06 Apr 2021

Amine–borane complex-initiated SF5Cl radical addition on alkenes and alkynes

  • Audrey Gilbert,
  • Pauline Langowski,
  • Marine Delgado,
  • Laurent Chabaud,
  • Mathieu Pucheault and
  • Jean-François Paquin

Beilstein J. Org. Chem. 2020, 16, 3069–3077, doi:10.3762/bjoc.16.256

Graphical Abstract
  • [48]. The first step would involve the formation of a trialkylborane species via the hydroboration of the alkene, as previously observed by 11B NMR spectroscopy [48][49]. In the presence of oxygen, the trialkylborane would, similarly to Et3B, generate an alkyl radical. The latter would react with
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Dec 2020

All-carbon [3 + 2] cycloaddition in natural product synthesis

  • Zhuo Wang and
  • Junyang Liu

Beilstein J. Org. Chem. 2020, 16, 3015–3031, doi:10.3762/bjoc.16.251

Graphical Abstract
  • catalytic amount of tributylstannane [40] led to a radical cyclization, in which the resultant alkyl radical formed was trapped by AIBN to give a proposed nitrogen-centered radical 70. An 1,4-hydrogen abstraction of the nitrogen-centered radical on 70 produced carbon-centered radical 71, which underwent
PDF
Album
Review
Published 09 Dec 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • reductively quenches the photocatalyst to form enaminyl radical 13•+. However, in this reaction 13•+ can then add to the alkene to give an alkyl radical 14•+, followed by hydrogen atom abstraction from the thiol, acting as a HAT catalyst, to give iminium ion intermediate 15. Hydrolysis of 15 generates the
  • begins with the condensation of 49 with enone 50 to form the iminium ion intermediate 51. Concomitantly, the excited-state photocatalyst generates an alkyl radical R• from R–H, either through HAT ([W] with a benzodioxole derivative) or SET ([Ir] with a tertiary amine). This radical then adds to the β
  • iminium ions 66 can be excited directly without formation of an EDA complex (Scheme 9a) [42]. The excited state iminium ion 66* can oxidise silanes 67 via a SET process to give radical cation 67•+ and alkyl radical 66•. Loss of the TMS group generates alkyl radicals 67• that can couple with 66
PDF
Album
Review
Published 29 Sep 2020

Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis

  • Shahboz Yakubov and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2020, 16, 2151–2192, doi:10.3762/bjoc.16.183

Graphical Abstract
  • ) compared to singlet Selectfluor® (N–F = 1.37 Å, Figure 9). After the immediate dissociation of triplet Selectfluor®, the formed Selectfluor® N-radical cation undergoes HAT with the substrate to afford an alkyl radical. The authors deemed a complex between AQN and fluorine (AQN + F) more plausible than the
  • formation of fluorine radicals. The generated alkyl radical could abstract fluorine atoms either from i) the AQN–F complex to regenerate AQN or ii) Selectfluor® to regenerate the Selectfluor® radical cation and thereby propagate a chain reaction. Following shortly after Tan’s report, Chen and co-workers
PDF
Album
Review
Published 03 Sep 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • , ortho-C–H activation delivering the photoactive intermediate. Under visible-light irradiation, the SET process from the excited ruthenacycle to the haloalkane coupling partner leads to the formation of a stabilized alkyl radical (Figure 39). Next, radical attack at the para-position of the carbohydrate
PDF
Album
Review
Published 21 Jul 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • turn gave intermediate 8.4· upon cyclization onto the methylenecyclopropane double bond. Ring opening of the strained cyclopropyl ring liberated an alkyl radical (in intermediate 8.5·) that readily cyclized onto the adjacent aromatic ring to give 8.6 in a good yield. The oxidation of 8.6 under radical
  • onto a vinyl azide (see the case of 16.1 in Scheme 16). Different radicals were used for this purpose. As an example, an α-carboxyethyl alkyl radical was formed from the corresponding α-bromoester under white LED irradiation in the presence of an IrIII-based photocatalyst. The addition of this
PDF
Album
Review
Published 25 Jun 2020

Oxime radicals: generation, properties and application in organic synthesis

  • Igor B. Krylov,
  • Stanislav A. Paveliev,
  • Alexander S. Budnikov and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2020, 16, 1234–1276, doi:10.3762/bjoc.16.107

Graphical Abstract
  • first pathway (Scheme 11A), the initial addition of the di-tert-butyliminoxyl radical to the double bond is followed by hydrogen atom abstraction from the resulting alkyl radical 24. The second pathway (Scheme 11B) begins with the abstraction of an allylic hydrogen atom, then the di-tert-butyliminoxyl
  • with the formation of alkyl radical 94. The latter attacked the nitrone moiety to form the bicyclic nitroxyl radical 95. When oxime 96 was oxidized with lead(IV) acetate, products 98 and 99 were observed. This result can be explained by the intramolecular attack of iminoxyl radical 97 on the phenyl π
PDF
Album
Review
Published 05 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • , the ability of transition metal complexes to intercept alkyl radicals has been exploited for expanding the possibility of C–C bond formation reactions to cross-couplings. In all of these transformations, the substituents on the alkyl radical determine if it reacts as a nucleophile or an electrophile
  • after the fragmentation of the oxidized form. Due to their attitude towards SET oxidations, these substrates are valuable alkyl radical precursors; however, they are generally less available than carboxylic acids, and the fragmentations release stoichiometric amounts of byproducts. The organic dye
  • 4CzIPN (OD6), due to its oxidative abilities in the excited state (E(PC*/PC−) ≈ 1.35 V), has proved to be a versatile organic photocatalyst for accessing C(sp3) radicals through oxidative fragmentations. In particular, it has been used for generating an alkyl radical from the 4-alkyl-1,4-dihydropyridine
PDF
Album
Review
Published 29 May 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • leading to an electron transfer to the iodine atom, thereby liberating iodide, an alkyl radical, and a radical cation of the Cu complex. Recombination of the latter radicals leads to the formation of the desired silane along with the regeneration of the active Cu species (Scheme 8). This strategy was also
  • explored on redox-active alkyl esters derived from N-hydroxyphthalimide (NHPI, 37), in which case the reactions proceeded through a similar radical pathway due to, in part, the alkyl radical surrogate nature of the NHPI esters. The radical generated via decarboxylation of these esters is easily trapped by
PDF
Album
Review
Published 15 Apr 2020

Controlling alkyne reactivity by means of a copper-catalyzed radical reaction system for the synthesis of functionalized quaternary carbons

  • Goki Hirata,
  • Yu Yamane,
  • Naoya Tsubaki,
  • Reina Hara and
  • Takashi Nishikata

Beilstein J. Org. Chem. 2020, 16, 502–508, doi:10.3762/bjoc.16.45

Graphical Abstract
  • reaction of 3 equivalents of terminal alkyne 1 (aryl substituted alkyne) and an α-bromocarbonyl compound 2 (tertiary alkyl radical precursor) undergoes tandem alkyl radical addition/Sonogashira coupling to produce 1,3-enyne compound 3 possessing a quaternary carbon in the presence of a copper catalyst
  • . Moreover, the reaction of α-bromocarbonyl compound 2 and an alkyne 4 possessing a carboxamide moiety undergoes tandem alkyl radical addition/C–H coupling to produce indolinone derivative 5. Keywords: copper catalyst; 1,3-enyne; functionalized quaternary carbon; indolinone; tandem alkyl radical addition
  • the reaction of 2a and electron-deficient alkyne 4a was performed under the conditions shown in Table 1, entry 9, the C–H cyclized product 5a was obtained instead of 3k. In this case, an alkyl radical addition followed by C–H cyclization via an alkenyl radical intermediate could be occur (Scheme 4). A
PDF
Album
Supp Info
Letter
Published 26 Mar 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • suggested a possible mechanism based on the measured and reported redox potential (Scheme 1). Upon irradiation at 530 nm using green light, the Cu(I) catalyst transitions to an excited state. Then, the excited copper complex transfers an electron to the alkyl halide, which can generate an alkyl radical that
  • reaction conditions. The authors suggested first the photoexcitation of a [Cu(I)] species. Then, the excited [Cu(I)]* species reduces the NHP ester to form a carboxyl radical and the phthalimide anion, which binds to the [Cu(II)] species. After the elimination of CO2, the recombination of the alkyl radical
  • the reaction mechanism and suggested the following one: First, the excited in situ-formed copper complex reduced the NHP ester, as demonstrated by the Stern–Volmer quenching experiment. The formed radical anion collapsed into the corresponding alkyl radical and the phthalimide anion. Then, the
PDF
Album
Review
Published 23 Mar 2020

Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid

  • Kaj M. van Vliet,
  • Nicole S. van Leeuwen,
  • Albert M. Brouwer and
  • Bas de Bruin

Beilstein J. Org. Chem. 2020, 16, 398–408, doi:10.3762/bjoc.16.38

Graphical Abstract
  • ” α-amino [59][60][61][62][63][64][65] or benzyl [66][67][68][69][70] radical species. However, the generation of unstabilized alkyl radical species is also known [71][72][73][74]. Based on these observations and considerations, we attempted to use monochloroacetic acid as a precursor for
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2020

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • the alkyl radical species B from substrate A and 2) fluorination of the alkyl radical species B with CuF2, which is in situ-generated from the reaction of CuXBr and CsF with the aid of an amide group, gives the desired product and recyclable CuF. Csp2–H bond formation catalyzed by Cu catalysts: In
PDF
Album
Review
Published 23 Sep 2019

Oxidative radical ring-opening/cyclization of cyclopropane derivatives

  • Yu Liu,
  • Qiao-Lin Wang,
  • Zan Chen,
  • Cong-Shan Zhou,
  • Bi-Quan Xiong,
  • Pan-Liang Zhang,
  • Chang-An Yang and
  • Quan Zhou

Beilstein J. Org. Chem. 2019, 15, 256–278, doi:10.3762/bjoc.15.23

Graphical Abstract
  • methylenecyclopropanes (compounds A). The cyclopropyl-substituted carbon radical D easily goes through a ring-opening to generate the alkyl radical E, and then cyclizes with the phenyl ring to afford the terminal product F (path I). The cyclopropyl olefins (compounds B) also react in the same cyclopropyl-substituted
  • carbon radical pathway to finish the ring-opening and cyclization transformation (path II). The cyclopropanols D firstly go through homolytic cleavage of the O–H bond to give the oxygen-centered radical J. The alkyl radical K, produced by ring-opening of intermediate J, reacts with a radical acceptor or
  • of MCPs 1 formed the more stable benzyl radical intermediate 5 [45][46], which underwent a ring-opening to generate the alkyl radical 6 [47]. Finally, the desired product 3 was generated through intramolecular cyclization of radical intermediate 6 with an aryl ring and oxidation deprotonation by
PDF
Album
Review
Published 28 Jan 2019

Copper(I)-catalyzed tandem reaction: synthesis of 1,4-disubstituted 1,2,3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and alkynes

  • Muhammad Israr,
  • Changqing Ye,
  • Munira Taj Muhammad,
  • Yajun Li and
  • Hongli Bao

Beilstein J. Org. Chem. 2018, 14, 2916–2922, doi:10.3762/bjoc.14.270

Graphical Abstract
  • experimental findings, a possible reaction mechanism is suggested as shown in Scheme 5. In the presence of the Cu(I) catalyst, alkyl diacyl peroxide decomposes into an alkyl radical, CO2, and releases a carboxyl–Cu(II) complex, which undergoes a ligand exchange with azidomethylsilane to form azido–Cu(II
  • ) species. The alkyl radical then abstracts the azido moiety from the azido–Cu(II) species to afford an alkyl azide and the regenerated Cu(I) catalyst. Then, a conventional CuAAC process delivers the desired cycloaddition product 3. Conclusion In summary, we have established an efficient, ligand- and
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2018
Other Beilstein-Institut Open Science Activities