Search results

Search for "cathodic reduction" in Full Text gives 26 result(s) in Beilstein Journal of Organic Chemistry.

Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

  • Roman Matthessen,
  • Jan Fransaer,
  • Koen Binnemans and
  • Dirk E. De Vos

Beilstein J. Org. Chem. 2014, 10, 2484–2500, doi:10.3762/bjoc.10.260

Graphical Abstract
  • . However, product formation through cathodic reduction of acetonitrile is ruled out properly, since no cyanoacetic acid was formed when using a cation-exchange membrane. Since most of the product is present in the anolyte, current yields are rather low (24%). Moreover, the electrolyte anion and the
  • appeared to be very promising for this purpose, fulfilling both the role of electrolyte and reducing agent. Tetraethylammonium cations have high reduction stability, while still possessing good ion pairing properties. The degree of delocalization of the positive charge is large enough to prevent cathodic
  • reduction and small enough to allow a quick and stable interaction with the cathodically formed carboxylate anions. Furthermore, oxalate and formate are easily oxidized at a Pt anode, gradually releasing the tetraethylammonium cations. The combination of both salts in acetonitrile gives near quantitative
PDF
Album
Review
Published 27 Oct 2014
Other Beilstein-Institut Open Science Activities