Search results

Search for "copper catalyst" in Full Text gives 99 result(s) in Beilstein Journal of Organic Chemistry.

Direct C–H amination reactions of arenes with N-hydroxyphthalimides catalyzed by cuprous bromide

  • Dongming Zhang,
  • Bin Lv,
  • Pan Gao,
  • Xiaodong Jia and
  • Yu Yuan

Beilstein J. Org. Chem. 2022, 18, 647–652, doi:10.3762/bjoc.18.65

Graphical Abstract
  • (40 mol %) in the presence of P(OEt)3 (6 equiv, triethyl phosphite) under air at 100 °C (Table 1). The yield of the corresponding amide 3a was 78% (Table 1, entry 1). The reaction was completely inhibited in the absence of the copper catalyst or P(OEt)3, and no product was detected (Table 1, entries 2
PDF
Album
Supp Info
Letter
Published 03 Jun 2022

Unexpected chiral vicinal tetrasubstituted diamines via borylcopper-mediated homocoupling of isatin imines

  • Marco Manenti,
  • Leonardo Lo Presti,
  • Giorgio Molteni and
  • Alessandra Silvani

Beilstein J. Org. Chem. 2022, 18, 303–308, doi:10.3762/bjoc.18.34

Graphical Abstract
  • most effectively, further promoting the conversion of the substrate. Other changes in reaction conditions, such as heating at 70 °C, increasing the amount of copper catalyst to 10 mol % and switching the copper salt from CuSO4 to the more soluble Cu(OTf)2, did not improve the yield significantly (Table
PDF
Album
Supp Info
Letter
Published 10 Mar 2022

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • chlorosulfonylated products 8 and 9, whereas replacing the copper catalyst by ruthenium-based, iridium-based, and eosin Y catalysts afforded the desired products only in trace amount. Unexpectedly, the corresponding CuII complex, Cu(dap)Cl2, also produced the desired product with good yield. Based on the literature
  • ester acted as an ideal radical precursor and accepted a single electron from the excited state CuI-acetylide complex. The copper catalyst plays a dual role, namely, as a photoredox catalyst and a cross-coupling catalyst. NHP-type esters inhibited the homodimerization of the alkyl radical and terminal
PDF
Album
Review
Published 12 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • %), largely due to the poison of copper catalyst by thioether. Acyclic amines were also tested and the amination products were obtained in low yields (4n, 18%; 4o, 15%). Unfortunately, primary amines and anilines were completely inert. Encouraged by the above results, we further tried to synthesize ferrocene
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • formed, which trough the CuAAC path generates the C5-cuprate triazole intermediate 115. The oxidative addition of arylboronic acid to the copper center forms the intermediate 116. The reductive elimination occurs to give the corresponding triazole 112 and to reform the copper catalyst for the next run
  • complex (ʟ-proline-MCM-41-CuCl) was obtained by the reaction of ʟ-proline-MCM-41 with CuCl in acetone at mild temperature (Scheme 21) [51]. A possible mechanism for this reaction is shown in Scheme 22. Initially, copper(I)-substituted acetylide intermediate 70 is produced via the reaction of copper
  • catalyst with the corresponding acetylide by using LiOt-Bu. Further intermolecular [3 + 2]-cycloadditions of azide 67 with intermediate 70 affords a 5-copper(I)-substituted triazolide intermediate 71. The oxidative addition of 1-bromoalkyne 68 forms an alkyne–Cu(III)Br–triazole complex intermediate 72
PDF
Album
Review
Published 13 Jul 2021

Helicene synthesis by Brønsted acid-catalyzed cycloaromatization in HFIP [(CF3)2CHOH]

  • Takeshi Fujita,
  • Noriaki Shoji,
  • Nao Yoshikawa and
  • Junji Ichikawa

Beilstein J. Org. Chem. 2021, 17, 396–403, doi:10.3762/bjoc.17.35

Graphical Abstract
  • -Dimethylformamide (DMF) was purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. 1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP) was distilled from molecular sieves 4 Å and stored over activated molecular sieves 4 Å. 1,4-Dioxane
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2021

A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogen-containing heterocycles

  • Bingbing Lai,
  • Meng Ye,
  • Ping Liu,
  • Minghao Li,
  • Rongxian Bai and
  • Yanlong Gu

Beilstein J. Org. Chem. 2020, 16, 2888–2902, doi:10.3762/bjoc.16.238

Graphical Abstract
  • ; heterogeneous catalyst; immobilized copper catalyst; lignosulfonate; nitrogen-containing heterocycles; solid acid; Introduction Heterogeneous metal catalysts have been continuously receiving considerable attention in the field of organic synthesis owing to the advantages of easy separation and recycling [1][2
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2020

Using multiple self-sorting for switching functions in discrete multicomponent systems

  • Amit Ghosh and
  • Michael Schmittel

Beilstein J. Org. Chem. 2020, 16, 2831–2853, doi:10.3762/bjoc.16.233

Graphical Abstract
  • binding site to nanoswitch [Cu(68)]+ preventing its action as an organocatalyst (OFF-1), while the copper catalyst [Cu(69)]+ was available to catalyze a click reaction between 4-nitrophenylacetylene (47) and benzyl azide (46) (ON-2). The addition of 1 equiv of phenanthroline 69 to the state SelfSORT-I
PDF
Album
Review
Published 20 Nov 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
PDF
Album
Review
Published 29 Sep 2020

Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 2212–2259, doi:10.3762/bjoc.16.186

Graphical Abstract
  • followed by the addition of CuI through an intermediate 11. This procedure provided a very low yield (7%) of a mixture of 12 (syn) and 13 (anti) products. Therefore, they opted an alternative route which involves the formation of organotin compound 14 followed by trimerization in the presence of copper
  • catalyst 15 to yield the trimerized products 12 (syn) and 13 (anti) in respectable yields (Scheme 2). The alkene-bridge exchange of 12 (syn) was accomplished by tandem ring-opening and ring-closing metathesis (ROM–RCM) in the presence of Grubbs’ first generation (G-I) catalyst to generate a C3-symmetric
PDF
Album
Review
Published 09 Sep 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
PDF
Album
Review
Published 21 Jul 2020

Synthesis and anticancer activity of bis(2-arylimidazo[1,2-a]pyridin-3-yl) selenides and diselenides: the copper-catalyzed tandem C–H selenation of 2-arylimidazo[1,2-a]pyridine with selenium

  • Mio Matsumura,
  • Tsutomu Takahashi,
  • Hikari Yamauchi,
  • Shunsuke Sakuma,
  • Yukako Hayashi,
  • Tadashi Hyodo,
  • Tohru Obata,
  • Kentaro Yamaguchi,
  • Yasuyuki Fujiwara and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2020, 16, 1075–1083, doi:10.3762/bjoc.16.94

Graphical Abstract
  • ]pyridin-3-yl] diselenide showed an excellent anticancer activity and low cytotoxicity toward noncancer cells, suggesting that this diselenide is a potential lead compound for anticancer therapy. Keywords: anticancer activity; copper catalyst; diselenide; imidazopyridine; selenide; selenium; Introduction
  • ). The interconversion of the diselenide 2 and the selenide 3 is also possibility in this reaction, with the expected mechanism shown in Scheme 3. The oxidative addition of the copper catalyst to the diselenide 2 generates the intermediate E, which is then attacked by an imidazopyridine 1 at the 3
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2020

Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents

  • Yafei Guo and
  • Syuzanna R. Harutyunyan

Beilstein J. Org. Chem. 2020, 16, 1006–1021, doi:10.3762/bjoc.16.90

Graphical Abstract
  • reactivity of the heteroaromatic alkenyl substrates by Lewis acid activation in combination with readily available and highly reactive Grignard reagents and a copper catalyst bound to a chiral diphosphine ligand. Using this methodology, various chiral heteroaromatic products were obtained with high
  • promoted the addition of Grignard reagents to N-Cbz-pyridone and N-Cbz-2,3-dihydropyridone Michael acceptors with high enantioselectivity and yield. It is worth mentioning that in copper-catalysed additions of Grignard reagents to N-Cbz-pyridone, the use of a Lewis acid (BF3·OEt2) together with the copper
  • catalyst is essential for achieving a high yield as well as a high regio- and enantioselectivity (up to 99% ee). Although organoaluminium, organozinc, and Grignard reagents were all successfully applied in the ACA of 2,3-dehydro-4-piperidones, an introduction of the vinyl group was not successful until
PDF
Album
Review
Published 14 May 2020

Copper catalysis with redox-active ligands

  • Agnideep Das,
  • Yufeng Ren,
  • Cheriehan Hessin and
  • Marine Desage-El Murr

Beilstein J. Org. Chem. 2020, 16, 858–870, doi:10.3762/bjoc.16.77

Graphical Abstract
  • iminosemiquinone redox-active ligand which was oxidized to iminobenzoquinone. The Canary group [30] reported a redox-reconfigurable copper catalyst that exhibits reversal of its helical chirality through redox stimuli (Scheme 8). Combining ʟ-methionine and catalytic urea groups with two different copper salts as
  • trifluoromethylation of heteroaromatics with redox-active iminosemiquinone ligands. Reversal of helical chirality upon redox stimuli and enantioselective Michael addition with a redox-reconfigurable copper catalyst. Interaction of guanidine-copper catalyst with oxygen and representative coupling products. a4 mol
PDF
Album
Review
Published 24 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • reaction. This represents the first example done in a water/THF solvent system at room temperature, giving moderate chemical yields and ees. It has been proposed that the ligand itself acts as an organocatalyst, eliminating the need for a copper catalyst. 1.3 Additions to aldehydes The Oestreich group [42
  • later, however, Lipshutz et al. revisited this reaction, showing that it could be performed using only 3 mol % of the copper catalyst, while leading to high chemical yields of the desired silylated product 112 (Scheme 22, left) [53]. In the same year, Hosomi and co-workers reported that the alternative
  • achiral copper for similar purposes. In general, the pathway for introducing boron into unsaturated compounds (C–B coupling) mediated by a copper catalyst relies on the reaction of a Cu(I) salt with an alkoxide (M–OR) which then undergoes transmetallation with an organoborane to form, e.g., L-Cu-Bpin (306
PDF
Album
Review
Published 15 Apr 2020

Copper-catalyzed O-alkenylation of phosphonates

  • Nuria Vázquez-Galiñanes,
  • Mariña Andón-Rodríguez,
  • Patricia Gómez-Roibás and
  • Martín Fañanás-Mastral

Beilstein J. Org. Chem. 2020, 16, 611–615, doi:10.3762/bjoc.16.56

Graphical Abstract
  • copper catalyst on an alkenyl(aryl)iodonium salt [33][34] would generate an alkenyl–copper(III) species which might undergo nucleophilic attack of the Lewis-basic oxygen of a dialkyl phosphonate. The resulting phosphonium-like intermediate would evolve by Arbuzov-type substitution of one of the alkyl
  • conversion was achieved and enol phosphonate 3a was isolated in 78% yield with full selectivity towards the monoalkenylation product (Table 1, entry 7). Importantly, no reaction was observed in the absence of copper catalyst (Table 1, entry 8), while the absence of dtbpy led to a minimal conversion (Table 1
PDF
Album
Supp Info
Letter
Published 03 Apr 2020

A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions

  • Pezhman Shiri and
  • Jasem Aboonajmi

Beilstein J. Org. Chem. 2020, 16, 551–586, doi:10.3762/bjoc.16.52

Graphical Abstract
  • (Scheme 14). The synthesized copper-catalyst 74 could be reused in up to ten consecutive cycles, and only very little leaching (0.08%) was observed. A novel and reusable, synergistic and dual catalyst Pd–Cu@rGO (78) was designed and synthesized by Naeimi and Ansarian through the decoration of reduced
  • , washed with THF and dichloromethane, and dried. Different organic halides (benzyl bromides, benzyl chloride, allyl bromide, aliphatic epoxides, and aromatic epoxides) were treated with sodium azide and phenylacetylene in the presence of a catalytic amount of the copper catalyst 121 in water at 70 °C
  • copper catalyst 131 loadings (0.1 mol %) at 30 °C for 24 h (Scheme 28). The heterogeneous catalyst 131 could be recycled eleven times, with only a small decrease in catalytic activity. After that, the yield of the riazole product significantly decreased. A new magnetic catalyst 136 was prepared using a
PDF
Album
Review
Published 01 Apr 2020

Copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters with chiral phenol–carbene ligands

  • Shohei Mimura,
  • Sho Mizushima,
  • Yohei Shimizu and
  • Masaya Sawamura

Beilstein J. Org. Chem. 2020, 16, 537–543, doi:10.3762/bjoc.16.50

Graphical Abstract
  • work of Stryker and co-workers on triphenylphosphine-stabilized copper hydride complexes [1][2], copper hydrides have been widely used for conjugate reductions of α,β-unsaturated carbonyl compounds [3]. Especially a chiral copper catalyst combined with a stoichiometric amount of a silane reagent, which
  • chiral p-tol-BINAP/copper catalyst established the excellent utility of chiral bisphosphine ligands for this type of reaction [4]. Surprisingly, however, chiral ligands based on N-heterocyclic carbenes (NHCs) [12] have not been applied to the conjugate reduction of α,β-unsaturated carbonyl compounds
  • , while an achiral NHC/copper catalyst has successfully been utilized in this reaction [13]. Meanwhile, we devoted our effort to develop novel enantioselective C–C bond formation reactions utilizing chiral phenol–NHC/copper catalyst systems [14][15][16][17][18], in which the phenol group of the NHC ligand
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2020

Controlling alkyne reactivity by means of a copper-catalyzed radical reaction system for the synthesis of functionalized quaternary carbons

  • Goki Hirata,
  • Yu Yamane,
  • Naoya Tsubaki,
  • Reina Hara and
  • Takashi Nishikata

Beilstein J. Org. Chem. 2020, 16, 502–508, doi:10.3762/bjoc.16.45

Graphical Abstract
  • reaction of 3 equivalents of terminal alkyne 1 (aryl substituted alkyne) and an α-bromocarbonyl compound 2 (tertiary alkyl radical precursor) undergoes tandem alkyl radical addition/Sonogashira coupling to produce 1,3-enyne compound 3 possessing a quaternary carbon in the presence of a copper catalyst
  • . Moreover, the reaction of α-bromocarbonyl compound 2 and an alkyne 4 possessing a carboxamide moiety undergoes tandem alkyl radical addition/C–H coupling to produce indolinone derivative 5. Keywords: copper catalyst; 1,3-enyne; functionalized quaternary carbon; indolinone; tandem alkyl radical addition
  • ][14][15][16]. Recently, we have prepared quaternary carbon centers via radical reactions by using α-bromocarbonyl compounds (a tertiary alkyl source) and olefins or heteroatoms in the presence of a copper catalyst [17][18][19]. During our studies, we found that combinations of alkynes and tertiary
PDF
Album
Supp Info
Letter
Published 26 Mar 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • )]/[Cu(I)]*/[Cu(II)] species and the reduction of the Zhdankin reagent by the copper catalyst to form an azidyl radical, which then reacted with the olefin. The resulting benzyl radical could then be oxidized, probably by the catalyst in the +II oxidation state, to generate a benzylic carbocation and the
  • tetrahydroquinolines and octahydroisoquinolo[2,1-a]pyrrolo[3,4-c]quinolines (Scheme 13) [29]. Importantly, the formation of the key α-amino radical resulted from an oxidation reaction catalyzed by the copper catalyst in the oxidation state +II. Using the [Cu(I)(dap)2]Cl complex as the catalyst and 2 equivalents of TFA
  • and co-worker described the synthesis of a new heteroleptic copper complex bearing a substituted bipyridine ligand (Scheme 18) [34]. The novel copper catalyst was fully characterized by X-ray crystallographic analysis, UV–visible absorption and emission as well as cyclic voltammetry. The catalyst [Cu
PDF
Album
Review
Published 23 Mar 2020

Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0

  • Bernd Strehmel,
  • Christian Schmitz,
  • Ceren Kütahya,
  • Yulian Pang,
  • Anke Drewitz and
  • Heinz Mustroph

Beilstein J. Org. Chem. 2020, 16, 415–444, doi:10.3762/bjoc.16.40

Graphical Abstract
  • system opens the possibility to synthesize well-defined polymeric materials in a green way due to the photochemical stability, low copper-catalyst concentration and the use of NIR light. Taking advantage of good penetration of NIR light, this approach provides also the opportunity to embed UV absorbing
PDF
Album
Supp Info
Review
Published 18 Mar 2020

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • 79. The complex 79 consisting of diols and a chiral copper catalyst Cu–L* easily gets deprotonated by cathodically generated MeO− to afford alkoxide anions 80, which reacts with anodically generated Br+ to form O-brominated intermediates 81. Finally, MeO− removed HBr from 81 to afford products 75/78
PDF
Album
Review
Published 13 Nov 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • phase-transfer copper catalyst (Scheme 27). Notably, with 10 mol % of (IPr)CuOTf, full conversion can be accomplished in 10 minutes at 45 °C. Allylic fluorination: In 2013, there is an example of a copper-catalyzed fluorination of internal allylic bromides (Scheme 28). In Liu’s study, this approach was
  • the same year, Loh’s group [132] used the same copper catalyst and Togni’s reagent to achieve the trifluoromethylation of enamides in good yields at room temperature (Scheme 72a). Meanwhile, this reaction exhibited excellent stereoselectivity towards the E-isomer. One year later, the same group [133
  • , mild reaction conditions (room temperature) and excellent functional group tolerance. In this instance, the copper catalyst may only promote the generation of the tert-butoxyl radical from TBHP. The oxidation of the intermediate A with t-BuOOH produces a carbocation B, followed by an oxidative
PDF
Album
Review
Published 23 Sep 2019

Synthesis of benzo[d]imidazo[2,1-b]benzoselenoazoles: Cs2CO3-mediated cyclization of 1-(2-bromoaryl)benzimidazoles with selenium

  • Mio Matsumura,
  • Yuki Kitamura,
  • Arisa Yamauchi,
  • Yoshitaka Kanazawa,
  • Yuki Murata,
  • Tadashi Hyodo,
  • Kentaro Yamaguchi and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2019, 15, 2029–2035, doi:10.3762/bjoc.15.199

Graphical Abstract
  • copper catalyst was not present (Table 1, entry 2). Several bases were screened for the reaction of 1a with Se powder (Table 1, entries 2–8). The use of Cs2CO3 resulted in the highest yield of 2a (99%, Table 1, entry 2). Decreasing the loading of Cs2CO3 from 2 to 1 equivalent significantly reduced the
PDF
Album
Supp Info
Letter
Published 26 Aug 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • copper catalyst dissolved in ionic liquid to four synthetic cycles. Nanotechnology coupled with heterogeneous catalysis has emerged as an efficient field of catalysis for various organic transformations. Inspired from this Bagdi et al. have reported a nano-copper oxide-mediated three-component A3
  • , where the absence of copper did not lead to the product formation (Table 4, entry 1). A double oxidative C–H amination reaction for the synthesis of 2-iodoimidazo[1,2-a]pyridines 137 was reported by Dheer et al. using a copper catalyst (Scheme 47) [129]. The synthesis of this moiety was also reported by
PDF
Album
Review
Published 19 Jul 2019
Other Beilstein-Institut Open Science Activities