Search results

Search for "epoxidation" in Full Text gives 154 result(s) in Beilstein Journal of Organic Chemistry.

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • trimethylsilyl cyanide (TMSCN) in THF at −10 °C. The reaction product 142 was obtained in quantitative yield and good diastereomeric ratio. Further hydrolysis of the cyclic acetal, and subsequent epoxidation of the resulting diol under typical Mitsunobu conditions led to epoxide derivative 143. The piperidine
PDF
Album
Review
Published 12 May 2021

Stereoselective synthesis and transformation of pinane-based 2-amino-1,3-diols

  • Ákos Bajtel,
  • Mounir Raji,
  • Matti Haukka,
  • Ferenc Fülöp and
  • Zsolt Szakonyi

Beilstein J. Org. Chem. 2021, 17, 983–990, doi:10.3762/bjoc.17.80

Graphical Abstract
  • epoxidation of (−)-α-pinene (6), carried out with meta-chloroperoxybenzoic acid (MCPBA), followed by a base-catalyzed allylic rearrangement mediated by aluminium isopropoxide (Al(OiPr)3). The resulting allylic alcohol 7 was reacted with trichloroacetyl isocyanate, followed by alkaline treatment, delivering
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2021

Stereoselective syntheses of 3-aminocyclooctanetriols and halocyclooctanetriols

  • Emine Salamci and
  • Yunus Zozik

Beilstein J. Org. Chem. 2021, 17, 705–710, doi:10.3762/bjoc.17.59

Graphical Abstract
  • prepared by epoxidation of the cyclooctenediol with m-chloroperbenzoic acid followed by hydrolysis with HBr(g) in methanol. Treatment of bromotriol with NaN3 and the reduction of the azide group yielded the other desired 3-aminocyclooctanetriol. Hydrolysis of the epoxides with HCl(g) in methanol gave
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2021

A new and efficient methodology for olefin epoxidation catalyzed by supported cobalt nanoparticles

  • Lucía Rossi-Fernández,
  • Viviana Dorn and
  • Gabriel Radivoy

Beilstein J. Org. Chem. 2021, 17, 519–526, doi:10.3762/bjoc.17.46

Graphical Abstract
  • MgO and tert-butyl hydroperoxide (TBHP) as oxidant is presented. This CoNPs@MgO/t-BuOOH catalytic combination allowed the epoxidation of a variety of olefins with good to excellent yield and high selectivity. The catalyst preparation is simple and straightforward from commercially available starting
  • and industrial applications [1]. Among them, allylic oxidation and olefin epoxidation constitute fundamental tools for the synthesis of homoallylic alcohols or α,β-unsaturated carbonyl compounds, and epoxides, respectively. In particular, epoxides are pivotal building blocks for the synthetic chemists
  • been reported, efficient and selective epoxidation of olefins remains a challenge. Due to safety and environmental issues, traditional methods involving the use of stoichiometric amounts of harmful oxidants (for example, peroxosulfates [13] or organic peracids [14]) have been replaced by the use of
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2021

Synthesis of legonmycins A and B, C(7a)-hydroxylated bacterial pyrrolizidines

  • Wilfred J. M. Lewis,
  • David M. Shaw and
  • Jeremy Robertson

Beilstein J. Org. Chem. 2021, 17, 334–342, doi:10.3762/bjoc.17.31

Graphical Abstract
  • that Snider’s attempt to oxidize, by epoxidation, the N,O-diacetyl derivative of compound 14 was not successful. Indeed, in our own work, the use of either NBS, MCPBA, or O2 with a transition-metal catalyst also gave unpromising results in attempts to oxidize compound 17. Future work will explore
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Diels–Alder reaction of β-fluoro-β-nitrostyrenes with cyclic dienes

  • Savva A. Ponomarev,
  • Roman V. Larkovich,
  • Alexander S. Aldoshin,
  • Andrey A. Tabolin,
  • Sema L. Ioffe,
  • Jonathan Groß,
  • Till Opatz and
  • Valentine G. Nenajdenko

Beilstein J. Org. Chem. 2021, 17, 283–292, doi:10.3762/bjoc.17.27

Graphical Abstract
  • ratios similar to those of the starting mixture 2. We believe that this is a result of an exo-epoxidation which is preferred in norbornene systems [78][79]. Such a functionalization is very attractive to produce new reactive building blocks bearing the norbornane scaffold. This approach can pave a
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • the corresponding cyclopropane 76 [77]. Caution is advised in view of a recent report that NaBH4 lowers the onset temperature for the thermal decomposition of DMSO [78]. The asymmetric difluorocyclopropanation has not yet been developed to the extent achieved for the epoxidation. Consequently, the
PDF
Album
Review
Published 26 Jan 2021

All-carbon [3 + 2] cycloaddition in natural product synthesis

  • Zhuo Wang and
  • Junyang Liu

Beilstein J. Org. Chem. 2020, 16, 3015–3031, doi:10.3762/bjoc.16.251

Graphical Abstract
  • upon refluxing in toluene and subsequent epoxidation afforded 51 [32], which was converted to (−)-crinipelline A (15) in two steps. The synthesis of waihoensene (16) commenced with the conversion of aldehyde 52a to the corresponding hydrazone 52b, which was treated with sodium hydride under reflux to
PDF
Album
Review
Published 09 Dec 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
PDF
Album
Review
Published 29 Sep 2020

Syntheses of spliceostatins and thailanstatins: a review

  • William A. Donaldson

Beilstein J. Org. Chem. 2020, 16, 1991–2006, doi:10.3762/bjoc.16.166

Graphical Abstract
  • manipulation of the C-4 and C-6 protecting groups gave the secondary allylic alcohol 71, which underwent an epoxidation with mCPBA to give 72. A second sequence of C-4/C-6 protection, manipulation, and oxidation gave the aldehyde 73. The disadvantages of this route include the overall length (13 or 14 steps
  • cleavage of the secondary triisopropylsilyl ether were prerequisites for a vanadium-catalyzed stereoselective epoxidation of the exocyclic double bond to give 90. The C-4 hydroxy group was eventually protected as a triethylsilyl ether. Through abortive attempts, Jacobsen found that the generation of the
  • exocyclic epoxide prior to the formation of the C-6–C-9 conjugated diene was necessary in order to avoid the unwanted epoxidation of the C-6–C-7 olefin. Koide employed a unique strategy in which the exocyclic epoxide was generated as the initial stereocenter (Scheme 15) [12][13]. The Sharpless asymmetric
PDF
Album
Review
Published 13 Aug 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
PDF
Album
Review
Published 22 Jun 2020

Synthesis of 3-substituted isoxazolidin-4-ols using hydroboration–oxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles

  • Lívia Dikošová,
  • Júlia Laceková,
  • Ondrej Záborský and
  • Róbert Fischer

Beilstein J. Org. Chem. 2020, 16, 1313–1319, doi:10.3762/bjoc.16.112

Graphical Abstract
  • isoxazolidines by means of dihydroxylation [9][10] and epoxidation [11][12] reactions. Regarding the stereochemistry, almost all of the realized additions proceed with an excellent trans stereoselectivity relative to the substituent at C-3, giving isoxazolidine-4,5-diols and isoxazolidinyl epoxides with a C-3/4
  • stereochemical results are consistent with our previous findings on the direct dihydroxylation and epoxidation reactions of 4,5-unsubstituted 2,3-dihydroisoxazoles [9][10][11][12]. To invert the relative C-3/4-trans stereochemistry, the isoxazolidin-4-ols 5a–c were first oxidized to the corresponding ketones
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2020

Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches

  • Rodrigo Costa e Silva,
  • Luely Oliveira da Silva,
  • Aloisio de Andrade Bartolomeu,
  • Timothy John Brocksom and
  • Kleber Thiago de Oliveira

Beilstein J. Org. Chem. 2020, 16, 917–955, doi:10.3762/bjoc.16.83

Graphical Abstract
  • epoxidation agent of an electron-deficient olefin intermediate, which was formed by deaminative Mannich coupling between the imine and nucleophiles such as malononitrile and methyl cyanoacetate (Scheme 64) [109]. Overall, a variety of additional examples of porphyrin-photocatalyzed heteroatom oxidations are
PDF
Album
Review
Published 06 May 2020

Combining enyne metathesis with long-established organic transformations: a powerful strategy for the sustainable synthesis of bioactive molecules

  • Valerian Dragutan,
  • Ileana Dragutan,
  • Albert Demonceau and
  • Lionel Delaude

Beilstein J. Org. Chem. 2020, 16, 738–755, doi:10.3762/bjoc.16.68

Graphical Abstract
  • subsequent Eu(fod)3-catalyzed intermolecular Diels–Alder cycloaddition and epoxidation reactions (Scheme 5) [69]. In this stereoselective synthesis, the last biomimetic step was critical to obtain the proper enantiomer of the tetracyclic core of nanolobatolide. Amphidinolide macrolides Amphidinolides
  • of the dienic compound through a Suzuki–Miyaura coupling and Julia–Kocienski olefination, followed by a Yamaguchi lactonization, and an asymmetric epoxidation in the presence of (+)-diethyl tartrate, conveniently produced (−)-amphidinolide K (4, Scheme 7). In a remarkable work, Trost et al. [72
  • , an intramolecular Ru-catalyzed alkene-alkyne (Ru-AA) coupling and a late-stage epoxidation were readily accomplished, while the installation of the α,α′-dihydroxy ketone through a dihydroxylation proved difficult. Noteworthy, the structural elucidation of the THP ring of des-epoxy-amphidinolide N
PDF
Album
Review
Published 16 Apr 2020

Synthesis of disparlure and monachalure enantiomers from 2,3-butanediacetals

  • Adam Drop,
  • Hubert Wojtasek and
  • Bożena Frąckowiak-Wojtasek

Beilstein J. Org. Chem. 2020, 16, 616–620, doi:10.3762/bjoc.16.57

Graphical Abstract
  • enantioselective reactions, such as the Sharpless epoxidation [19][20][21][22][23][24], asymmetric dihydroxylation [25][26], chloroallyloboronation [27], or iodolactonization [28]. Most recently a method using the asymmetric chlorination of dodecanal by LiCl in the presence of a chiral imidazolidinone catalyst has
  • also been described [29]. However, many of these methods have some drawbacks – the most important one being the insufficient enantiomeric purity for biological and commercial applications [29]. (+)-Disparlure used in most commercial lures is prepared by the Sharpless epoxidation reaction, which gives
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Combination of multicomponent KA2 and Pauson–Khand reactions: short synthesis of spirocyclic pyrrolocyclopentenones

  • Riccardo Innocenti,
  • Elena Lenci,
  • Gloria Menchi and
  • Andrea Trabocchi

Beilstein J. Org. Chem. 2020, 16, 200–211, doi:10.3762/bjoc.16.23

Graphical Abstract
  • reduced gauche interactions [55]. Subsequent epoxidation at the double bond directed by the hydroxy group and using m-chloroperbenzoic acid allowed to install two additional stereocenters with complete control of the relative stereochemistry in 68% yield. Such two-step synthesis proved to proceed also in
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Construction of trisubstituted chromone skeletons carrying electron-withdrawing groups via PhIO-mediated dehydrogenation and its application to the synthesis of frutinone A

  • Qiao Li,
  • Chen Zhuang,
  • Donghua Wang,
  • Wei Zhang,
  • Rongxuan Jia,
  • Fengxia Sun,
  • Yilin Zhang and
  • Yunfei Du

Beilstein J. Org. Chem. 2019, 15, 2958–2965, doi:10.3762/bjoc.15.291

Graphical Abstract
  • reagents have emerged as a class of efficient and environmentally benign nonmetal “green” oxidants [66][67][68][69][70][71][72][73]. For instance, iodosobenzene (PhIO) [74] has been widely used in many synthetic transformations. It was found that PhIO is efficient in realizing epoxidation of olefins [75
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • further oxidation to carbonyls or carboxylates. Other reactions, such as epoxidation, ether bond formation, and structural rearrangement have also been reported (Figure 7). CYP114 in gibberellin (5) biosynthesis, for example, catalyzes the unique oxidation/six-membered to five-membered ring contraction of
  • crystal structures, homology models, or mechanistic information to select the residues to be mutated. For example, P450BM3 (CYP102A1) was rationally evolved to catalyze the epoxidation of amorphadiene (21) by expanding the active site, minimizing competing reactions, and facilitating substrate access
  • -isozizaene (33) synthase mutants that produce different sesquiterpene skeletons. Substrate promiscuity and engineering of CYPs. a) Selected examples from using a CYP library to oxidize various monoterpenes. b) Rational engineering of P450BM3 for epoxidation of amorphadiene (21). F87A/A328L and R47L/Y51F
PDF
Album
Supp Info
Review
Published 29 Nov 2019

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • towards asymmetric electroepoxidation of olefins 71 in a biphasic CH2Cl2/aqueous NaCl system (Scheme 28). The constant current epoxidation of 71 in an undivided cell resulted in chiral epoxides 73 in good yields and moderate enantioselectivities [66]. In 2008, Onomura and co-workers described the
  • their review article [72]. In this section, we will be presenting a concise description of the use of organocatalysts as chiral inductors in electroorganic synthesis. In 2008, Page, Marken and their group reported a method for electricity-driven asymmetric organocatalytic epoxidation. The percarbonate
  • obtained via oxidation by electrogenerated CO42− [73]. Moreover, they showed that electrogenerated persulfate generated in situ via a similar anodic oxidation of H2SO4 could act as an even better oxidant in presence of catalyst 103 to achieve the epoxidation of 71'c with higher ee values (Scheme 36). In
PDF
Album
Review
Published 13 Nov 2019

Current understanding and biotechnological application of the bacterial diterpene synthase CotB2

  • Ronja Driller,
  • Daniel Garbe,
  • Norbert Mehlmer,
  • Monika Fuchs,
  • Keren Raz,
  • Dan Thomas Major,
  • Thomas Brück and
  • Bernhard Loll

Beilstein J. Org. Chem. 2019, 15, 2355–2368, doi:10.3762/bjoc.15.228

Graphical Abstract
  • include epoxidation resulting in 3,4-epoxy-7,18-dolabelladien-14-one (13) or hydroboration of 3,7,18-dolabellatriene (12, Scheme 1) that has been previously biotechnologically manufactured using CotB2W288G [103]. Another successful example is the oxidative transformation of cattleyene and phomopsen [104
PDF
Album
Review
Published 02 Oct 2019

A review of the total syntheses of triptolide

  • Xiang Zhang,
  • Zaozao Xiao and
  • Hongtao Xu

Beilstein J. Org. Chem. 2019, 15, 1984–1995, doi:10.3762/bjoc.15.194

Graphical Abstract
  • isomer 43. Treatment of 43 with methoxide ions in methanol at room temperature for 15 min gave the desired C-5 trans-butenolide 8 (40%) along with its C-5 cis-epimer 44 (60%), which is the sole product from the base-catalyzed isomerization of 43. Epoxidation of 43 gave a C-4,5-epoxide intermediate, which
  • the desired stereochemistry of the C-7 benzylic hydroxy group. Compound 46 was converted to triptonide 2 by Alder periodate reaction (NaIO4, 74%), and a sequencing m-CPBA epoxidation and basic hydrogen peroxide oxidation (H2O2/OH−) procedure (two steps, 28%). Finally, sodium borohydride reduction of 2
  • new methodologies of butenolide formation. The first butenolide formation started with the reaction of ketone 68 with carbon disulfide (CS2) and iodomethane (MeI) to give the ketene dithioacetal intermediate 69, which was subjected to a Corey–Chaykovsky epoxidation, followed by acid hydrolysis to give
PDF
Album
Review
Published 22 Aug 2019

N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds

  • Iwona E. Głowacka,
  • Aleksandra Trocha,
  • Andrzej E. Wróblewski and
  • Dorota G. Piotrowska

Beilstein J. Org. Chem. 2019, 15, 1722–1757, doi:10.3762/bjoc.15.168

Graphical Abstract
  • acids and their cyclic forms (pyrrolidin-2-ones) takes advantage of the stereoselective epoxidation of the aziridine acrylaldehyde 161 to predominantly (98:2) form the aziridine epoxide 162 when (S)-[diphenyl(trimethylsilyloxy)methyl]pyrrolidine was used as a catalyst (Scheme 42) [94]. A key β
PDF
Album
Review
Published 23 Jul 2019

Stereochemical investigations on the biosynthesis of achiral (Z)-γ-bisabolene in Cryptosporangium arvum

  • Jan Rinkel and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2019, 15, 789–794, doi:10.3762/bjoc.15.75

Graphical Abstract
  • cyclisation mechanism [27]. The absolute configuration of the intermediates nerolidyl diphosphate and the bisabolyl cation To address this question experimentally, (R)- and (S)-NPP were synthesised following a known route for enantioselective preparation of nerolidol [28] by Sharpless epoxidation of farnesol
PDF
Album
Supp Info
Letter
Published 27 Mar 2019

Synthesis of polydicyclopentadiene using the Cp2TiCl2/Et2AlCl catalytic system and thin-layer oxidation of the polymer in air

  • Zhargolma B. Bazarova,
  • Ludmila S. Soroka,
  • Alex A. Lyapkov,
  • Мekhman S. Yusubov and
  • Francis Verpoort

Beilstein J. Org. Chem. 2019, 15, 733–745, doi:10.3762/bjoc.15.69

Graphical Abstract
  • located on the surface of the polymer are capable of various addition reactions (bromination, epoxidation, oxidation) forming films of several tens or hundreds of nanometers thick on the surface. However, no further penetration of reactants into the deeper polydicyclopentadiene layers occurs [28]. It is
PDF
Album
Full Research Paper
Published 20 Mar 2019
Other Beilstein-Institut Open Science Activities