Search for "formal synthesis" in Full Text gives 41 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265
Graphical Abstract
Scheme 1: Scaled industrial processes for the synthesis of simple pyridines.
Scheme 2: Synthesis of nicotinic acid from 2-methyl-5-ethylpyridine (1.11).
Scheme 3: Synthesis of 3-picoline and nicotinic acid.
Scheme 4: Synthesis of 3-picoline from 2-methylglutarodinitrile 1.19.
Scheme 5: Picoline-based synthesis of clarinex (no yields reported).
Scheme 6: Mode of action of proton-pump inhibitors and structures of the API’s.
Scheme 7: Hantzsch-like route towards the pyridine rings in common proton pump inhibitors.
Figure 1: Structures of rosiglitazone (1.40) and pioglitazone (1.41).
Scheme 8: Synthesis of rosiglitazone.
Scheme 9: Syntheses of 2-pyridones.
Scheme 10: Synthesis and mechanism of 2-pyrone from malic acid.
Scheme 11: Polymer-assisted synthesis of rosiglitazone.
Scheme 12: Synthesis of pioglitazone.
Scheme 13: Meerwein arylation reaction towards pioglitazone.
Scheme 14: Route towards pioglitazone utilising tyrosine.
Scheme 15: Route towards pioglitazone via Darzens ester formation.
Scheme 16: Syntheses of the thiazolidinedione moiety.
Scheme 17: Synthesis of etoricoxib utilising Negishi and Stille cross-coupling reactions.
Scheme 18: Synthesis of etoricoxib via vinamidinium condensation.
Figure 2: Structures of nalidixic acid, levofloxacin and moxifloxacin.
Scheme 19: Synthesis of moxifloxacin.
Scheme 20: Synthesis of (S,S)-2,8-diazabicyclo[4.3.0]nonane 1.105.
Scheme 21: Synthesis of levofloxacin.
Scheme 22: Alternative approach to the levofloxacin core 1.125.
Figure 3: Structures of nifedipine, amlodipine and clevidipine.
Scheme 23: Mg3N2-mediated synthesis of nifedipine.
Scheme 24: Synthesis of rac-amlodipine as besylate salt.
Scheme 25: Aza Diels–Alder approach towards amlodipine.
Scheme 26: Routes towards clevidipine.
Figure 4: Examples of piperidine containing drugs.
Figure 5: Discovery of tiagabine based on early leads.
Scheme 27: Synthetic sequences to tiagabine.
Figure 6: Structures of solifenacin (2.57) and muscarine (2.58).
Scheme 28: Enantioselective synthesis of solifenacin.
Figure 7: Structures of DPP-4 inhibitors of the gliptin-type.
Scheme 29: Formation of inactive diketopiperazines from cis-rotameric precursors.
Figure 8: Co-crystal structure of carmegliptin bound in the human DPP-4 active site (PDB 3kwf).
Scheme 30: Improved route to carmegliptin.
Figure 9: Structures of lamivudine and zidovudine.
Scheme 31: Typical routes accessing uracil, thymine and cytosine.
Scheme 32: Coupling between pyrimidones and riboses via the Vorbrüggen nucleosidation.
Scheme 33: Synthesis of lamivudine.
Scheme 34: Synthesis of raltegravir.
Scheme 35: Mechanistic studies on the formation of 3.22.
Figure 10: Structures of selected pyrimidine containing drugs.
Scheme 36: General preparation of pyrimidines and dihydropyrimidones.
Scheme 37: Synthesis of imatinib.
Scheme 38: Flow synthesis of imatinib.
Scheme 39: Syntheses of erlotinib.
Scheme 40: Synthesis of erlotinib proceeding via Dimroth rearrangement.
Scheme 41: Synthesis of lapatinib.
Scheme 42: Synthesis of rosuvastatin.
Scheme 43: Alternative preparation of the key aldehyde towards rosuvastatin.
Figure 11: Structure comparison between nicotinic acetylcholine receptor agonists.
Scheme 44: Syntheses of varenicline and its key building block 4.5.
Scheme 45: Synthetic access to eszopiclone and brimonidine via quinoxaline intermediates.
Figure 12: Bortezomib bound in an active site of the yeast 20S proteasome ([114], pdb 2F16).
Scheme 46: Asymmetric synthesis of bortezomib.
Figure 13: Structures of some prominent piperazine containing drugs.
Figure 14: Structural comparison between the core of aplaviroc (4.35) and a type-1 β-turn (4.36).
Scheme 47: Examplary synthesis of an aplaviroc analogue via the Ugi-MCR.
Scheme 48: Syntheses of azelastine (5.1).
Figure 15: Structures of captopril, enalapril and cilazapril.
Scheme 49: Synthesis of cilazapril.
Figure 16: Structures of lamotrigine, ceftriaxone and azapropazone.
Scheme 50: Synthesis of lamotrigine.
Scheme 51: Alternative synthesis of lamotrigine (no yields reported).
Figure 17: Structural comparison between imiquimod and the related adenosine nucleoside.
Scheme 52: Conventional synthesis of imiquimod (no yields reported).
Scheme 53: Synthesis of imiquimod.
Scheme 54: Synthesis of imiquimod via tetrazole formation (not all yields reported).
Figure 18: Structures of various anti HIV-medications.
Scheme 55: Synthesis of abacavir.
Figure 19: Structures of diazepam compared to modern replacements.
Scheme 56: Synthesis of ocinaplon.
Scheme 57: Access to zaleplon and indiplon.
Scheme 58: Different routes towards the required N-methylpyrazole 6.65 of sildenafil.
Scheme 59: Polymer-supported reagents in the synthesis of key aminopyrazole 6.72.
Scheme 60: Early synthetic route to sildenafil.
Scheme 61: Convergent preparations of sildenafil.
Figure 20: Comparison of the structures of sildenafil, tadalafil and vardenafil.
Scheme 62: Short route to imidazotriazinones.
Scheme 63: Alternative route towards vardenafils core imidazotriazinone (6.95).
Scheme 64: Bayer’s approach to the vardenafil core.
Scheme 65: Large scale synthesis of vardenafil.
Scheme 66: Mode of action of temozolomide (6.105) as methylating agent.
Scheme 67: Different routes to temozolomide.
Scheme 68: Safer route towards temozolomide.
Figure 21: Some unreported heterocyclic scaffolds in top market drugs.
Beilstein J. Org. Chem. 2013, 9, 2250–2264, doi:10.3762/bjoc.9.264
Graphical Abstract
Figure 1: Gold-promoted 1,2-acyloxy migration on propargylic systems.
Scheme 1: Gold-catalyzed enantioselective intermolecular cyclopropanation.
Scheme 2: Gold-catalyzed enantioselective intramolecular cyclopropanation.
Scheme 3: Gold-catalyzed cyclohepta-annulation cascade.
Scheme 4: Application to the formal synthesis of frondosin A.
Scheme 5: Gold(I)-catalyzed enantioselective cyclopropenation of alkynes.
Scheme 6: Enantioselective cyclopropanation of diazooxindoles.
Figure 2: Proposed structures for gold-activated allene complexes.
Scheme 7: Gold-catalyzed enantioselective [2 + 2] cycloadditions of allenenes.
Scheme 8: Gold-catalyzed allenediene [4 + 3] and [4 + 2] cycloadditions.
Scheme 9: Gold-catalyzed enantioselective [4 + 2] cycloadditions of allenedienes.
Scheme 10: Gold-catalyzed enantioselective [4 + 3] cycloadditions of allenedienes.
Scheme 11: Gold-catalyzed enantioselective [4 + 2] cycloadditions of allenamides.
Scheme 12: Enantioselective [2 + 2] cycloadditions of allenamides.
Scheme 13: Mechanistic rational for the gold-catalyzed [2 + 2] cycloadditions.
Scheme 14: Enantioselective cascade cycloadditions between allenamides and oxoalkenes.
Scheme 15: Enantioselective [3 + 2] cycloadditions of nitrones and allenamides.
Scheme 16: Enantioselective formal [4 + 3] cycloadditions leading to 1,2-oxazepane derivatives.
Scheme 17: Enantioselective gold(I)-catalyzed 1,3-dipolar [3 + 3] cycloaddition between 2-(1-alkynyl)-2-alken-...
Scheme 18: Enantioselective [4 + 3] cycloaddition leading to 5,7-fused bicyclic furo[3,4-d][1,2]oxazepines.
Beilstein J. Org. Chem. 2013, 9, 2028–2032, doi:10.3762/bjoc.9.239
Graphical Abstract
Figure 1: Structure of the guaiane (−)-oxyphyllol (1).
Scheme 1: Retrosynthetic analysis for (−)-oxyphyllol (1) and structures of the guaiane sesquiterpenes (+)-ori...
Scheme 2: Attempted selective deoxygenation of diol 7. a) 1 mol % K2OsO4, NMO, acetone, water, THF, rt, 97%, ...
Scheme 3: Conversion of 4 to 1. a) 20 mol % Co(acac)2, PhSiH3, 1 atm O2, THF, 0°C, 82%, diastereomeric ratio ...
Beilstein J. Org. Chem. 2013, 9, 860–865, doi:10.3762/bjoc.9.99
Graphical Abstract
Scheme 1: Our first- [26] and second-generation [27] approaches to (−)-agelastatin A (1).
Scheme 2: The present iron(II)-mediated aminohalogenation of N-tosyloxycarbamate 8 providing key intermediate...
Scheme 3: Aminohalogenation of azidoformate 3 (2 g scale) under FeBr2/Bu4NBr conditions.
Figure 1: Byproducts formed by aminohalogenation of N-tosyloxycarbamate 8 with FeCl2/TMSCl in EtOH (see Table 1; ent...
Scheme 4: Plausible reaction pathways in the aminohalogenation of N-tosyloxycarbamate 8 with FeX2/Bu4NX.
Scheme 5: Plausible reaction pathway to produce compounds 9 and 10.
Beilstein J. Org. Chem. 2013, 9, 557–576, doi:10.3762/bjoc.9.61
Graphical Abstract
Scheme 1: Key radical step in the total synthesis of (–)-dendrobine.
Scheme 2: Radical cascade in the total synthesis of (±)-13-deoxyserratine (ACCN = 1,1'-azobis(cyclohexanecarb...
Scheme 3: Formation of the complete skeleton of (±)-fortucine.
Scheme 4: Model radical sequence for the synthesis of quadrone.
Scheme 5: Radical cascade using the Barton decarboxylation.
Scheme 6: Simplified mechanism for the xanthate addition to alkenes.
Scheme 7: Synthesis of β-lactam derivatives.
Scheme 8: Sequential additions to three different alkenes (PhthN = phthalimido).
Scheme 9: Key cascade in the total synthesis of (±)-matrine (43).
Scheme 10: Synthesis of complex tetralones.
Scheme 11: Synthesis of functionalised azaindoline and indole derivatives.
Scheme 12: Synthesis of thiochromanones.
Scheme 13: Synthesis of complex benzothiepinones. Conditions: 1) CF3COOH; 2) RCHO / AcOH (PMB = p-methoxybenzy...
Scheme 14: Formation and capture of a cyclic nitrone.
Scheme 15: Synthesis of bicyclic cyclobutane motifs.
Scheme 16: Construction of the CD rings of steroids.
Scheme 17: Rapid assembly of polyquinanes.
Scheme 18: Formation of a polycyclic structure via an allene intermediate.
Scheme 19: A polycyclic structure via the alkylative Birch reduction.
Scheme 20: Synthesis of polycyclic pyrimidines and indoline structures.
Scheme 21: Construction of a trans-decalin derivative.
Scheme 22: Multiple uses of a chloroacetonyl xanthate.
Scheme 23: A convergent route to spiroketals.
Scheme 24: A modular approach to 3-arylpiperidines.
Scheme 25: A convergent route to cyclopentanols and to functional allenes.
Scheme 26: Allylation and vinylation of a xanthate and an iodide.
Scheme 27: Vinyl epoxides as allylating agents.
Scheme 28: Radical allylations using allylic alcohol derivatives.
Scheme 29: Synthesis of variously substituted lactams.
Scheme 30: Nickel-mediated synthesis of unsaturated lactams.
Scheme 31: Total synthesis of (±)-3-demethoxy-erythratidinone.
Scheme 32: Generation and capture of an iminyl radical from an oxime ester.
Beilstein J. Org. Chem. 2013, 9, 166–172, doi:10.3762/bjoc.9.19
Graphical Abstract
Scheme 1: (A) Silyl glyoxylates as versatile reagents for three-component coupling reactions: representative ...
Scheme 2: Potential applications of silyl glyoxylate couplings and precedent synthetic intermediates toward t...
Scheme 3: Three-component coupling with a vinyl nucleophile and elaboration to Ichihara’s aldehyde.
Scheme 4: Modified Julia olefination as a step-efficient alternative endgame strategy.
Scheme 5: Three-component coupling with an allyl nucleophile and demonstration of successful ruthenium-cataly...
Scheme 6: Approaches considered to address the stereochemical issue.
Scheme 7: Use of a dithiane moiety to excert stereochemical control in the three-component coupling reaction ...
Scheme 8: Synthesis of a vinyl iodide for nucleophile generation and its use in a three-component coupling re...
Beilstein J. Org. Chem. 2012, 8, 2214–2222, doi:10.3762/bjoc.8.250
Graphical Abstract
Scheme 1: Strategy for the synthesis of (1,4-dihydro)pyridines by deprotonation/intramolecular carbolithiatio...
Scheme 2: Feasibility of the deprotonation/intramolecular carbolithiation.
Scheme 3: Synthesis of the starting N-allyl-ynamides.
Scheme 4: Intramolecular carbolithiation of N-allyl-ynamides to 1,4-dihydropyridines and pyridines.
Scheme 5: 2,3-Disubstituted pyridines by trapping of the intermediate metallated 1,4-dihydropyridine.
Scheme 6: Formal synthesis of the anti-dyskinesia agent, 5-HT1A receptor agonist, dopamine D2 receptor ligand...
Beilstein J. Org. Chem. 2012, 8, 1246–1255, doi:10.3762/bjoc.8.140
Graphical Abstract
Figure 1: Terpenoids 1–5 present in Alloxysta victrix and cis-fused bicyclic iridoids known from other insect...
Figure 2: 70 eV EI-mass spectrum of the iridoid X, a component of the volatile secretions of the parasitoid w...
Figure 3: Structures and gas chromatographic retention times of trans-fused dihydronepetalactones on a conven...
Scheme 1: Route from (S)-pulegone to the mixture of dihydronepetalactones a and b, consequently following Wol...
Figure 4: Configuration of the dihydronepetalactone a.
Figure 5: Route to stereochemically pure trans-fused dihydronepetalactones a–d from (R)-limonene.
Scheme 2: Synthesis of the key compound 16. Reaction conditions: a) O3, MeOH, −50 °C (86%); b) AcOH, piperidi...
Scheme 3: Synthesis of trans,trans-substituted dihydronepetalactone b. Reaction conditions: a) TBDMSCl, imida...
Figure 6: Configurations of compound 24 and the dihydronepetalactone b.
Scheme 4: Synthesis of cis,trans-substituted dihydronepetalactone c. Reaction conditions: a) Crabtree's catal...
Figure 7: Configurations of compound 26 and the dihydronepetalactone c.
Scheme 5: Synthesis of a 2:3 mixture of dihydronepetalactones c and d. Reaction conditions: a) (COCl)2, DMSO,...
Scheme 6: Formal synthesis of a mixture of dihydronepetalactones a and b from (R)-limonene.
Beilstein J. Org. Chem. 2012, 8, 567–578, doi:10.3762/bjoc.8.64
Graphical Abstract
Figure 1: Biologically active natural products and drugs containing the piperidine ring.
Scheme 1: A general strategy to 5-nitropiperidin-2-ones and related heterocycles.
Scheme 2: The synthesis of Michael adduct model substrates for the nitro-Mannich/lactamisation cascade.
Scheme 3: Nitro-Mannich/lactamisation cascade with in situ formed imines.
Figure 2: Cyclic imines employed in nitro-Mannich/lactamisation cascade.
Scheme 4: Nitro-Mannich/lactamisation cascade of diastereomeric Michael adducts 6a, 6a’’ with cyclic imine 5a....
Scheme 5: Nitro-Mannich/lactamisation cascade with cyclic imines. aDiastereomeric ratio in a crude reaction m...
Scheme 6: Possible explanations for the observed high stereoselectivities in the nitro-Mannich/lactamisation ...
Scheme 7: Thermodynamically-driven epimerisation of 5-nitropiperidin-2-ones 2m and 2m’.
Figure 3: Thermodynamically driven epimerisation of 5-nitropiperidin-2-ones 2m and 2m’; identical diastereome...
Scheme 8: One-pot three/four-component enantioselective Michael addition/nitro-Mannich/lactamisation cascade.
Scheme 9: Protodenitration of 5-nitropiperidin-2-ones.
Scheme 10: Various reductions of denitrated heterocycles.
Beilstein J. Org. Chem. 2011, 7, 1475–1485, doi:10.3762/bjoc.7.171
Graphical Abstract
Scheme 1: Structure and retrosynthetic analysis of fredericamycin A.
Scheme 2: Assembly of the isoquinolone segment of fredericamycin.
Scheme 3: Synthesis of a naphthalide precursor to the quinoid moiety of fredericamycin.
Scheme 4: Palladium-mediated cyclization of a fredericamycin model system.
Scheme 5: Synthesis of the precursor of fredericamycin and the facile air oxidation thereof.
Scheme 6: Formal synthesis of fredericamycin A.
Figure 1: Structure of nothapodytine B.
Scheme 7: A useful pyridone synthesis.
Scheme 8: Retrosynthetic logic for nothapodytine B.
Scheme 9: Preparation of a key nothapodytine fragment.
Scheme 10: Total synthesis of nothapodytine B.
Figure 2: Structures of topopyrones.
Scheme 11: Retrosynthetic logic for the linear series of topopyrones.
Scheme 12: Construction of the molecular subunit common to all topopyrones.
Scheme 13: Difficulties encountered during the merger of the topopyrone D moieties.
Scheme 14: Efficient synthesis of a simplified anthraquinone.
Scheme 15: Total synthesis of topopyrone D.
Scheme 16: Total synthesis of topopyrone B.
Beilstein J. Org. Chem. 2011, 7, 1315–1322, doi:10.3762/bjoc.7.154
Graphical Abstract
Figure 1: Chiral diols useful for asymmetric synthesis and the tetralithio intermediate 8.
Scheme 1: Directed ortho,ortho'-dimetalation of (R,R)-hydrobenzoin (3).
Figure 2: Percentage of (R,R)-hydrobenzoin (3) (○), monodeuterohydrobenzoin (13) (■), and dideuterohydrobenzo...
Figure 3: Percentage of methylhydrobenzoin (14) (■), and dimethylhydrobenzoin (15) (Δ) as determined by 1H NM...
Scheme 2: Formation of the tetralithio intermediate 8 and the X-ray crystal structure of the bis(siloxane) 19....
Scheme 3: Reaction of the tetralithio intermediate 8 with various electrophiles.
Scheme 4: Reactions of the diiodohydrobenzoin 12 and X-ray crystal structure of the dihydrosilepin 31.
Scheme 5: Cross coupling reactions of the bis(benzoxaborol) 20 and a short formal synthesis of (R,R)-Vivol (4...
Beilstein J. Org. Chem. 2011, 7, 740–743, doi:10.3762/bjoc.7.84
Graphical Abstract
Scheme 1: Retrosynthetic analysis.
Scheme 2: Preparation of compound 5.
Scheme 3: Synthesis of the cycloheptenone 4.
Scheme 4: Completion of the formal synthesis of clavukerin A.
Beilstein J. Org. Chem. 2011, 7, 699–716, doi:10.3762/bjoc.7.81
Graphical Abstract
Scheme 1: Well-defined Mo- and Ru-alkylidene metathesis catalysts.
Scheme 2: Representative pyrrolidine-based iminocyclitols.
Scheme 3: Synthesis of (±)-(2R*,3R*,4S*)-2-hydroxymethylpyrrolidin-3,4-diol (18), (±)-2-hydroxymethylpyrrolid...
Scheme 4: Synthesis of enantiopure iminocyclitol (−)-(2S,3R,4S,5S)-2,5-dihydroxymethylpyrrolidin-3,4-diol (23...
Scheme 5: Synthesis of 1,4-dideoxy-1,4-imino-D-allitol (29) and formal synthesis of (2S,3R,4S)-3,4-dihydroxyp...
Scheme 6: Synthesis of iminocyclitols 35 and 36.
Scheme 7: Total synthesis of iminocyclitols 40 and 44.
Scheme 8: Synthesis of 2,5-dideoxy-2,5-imino-D-mannitol [(+)-DMDP] (49) and (−)-bulgecinine (50).
Scheme 9: Synthesis of (+)-broussonetine G (53).
Scheme 10: Structural features of broussonetines 54.
Scheme 11: Synthesis of broussonetines by cross-metathesis.
Scheme 12: Representative piperidine-based iminocyclitols.
Scheme 13: Total synthesis of 1-deoxynojirimycin (62) and 1-deoxyaltronojirimycin (65).
Scheme 14: Synthesis by RCM of 1-deoxymannonojirimycin (63) and 1-deoxyallonojirimycin (66).
Scheme 15: Total synthesis of (+)-1-deoxynojirimycin (62).
Scheme 16: Synthesis of ent-1,6-dideoxynojirimycin (83) and 5-amino-1,5,6-trideoxyaltrose (84).
Scheme 17: Synthesis of 1-deoxygalactonojirimycin (64), 1-deoxygulonojirimycin (91) and 1-deoxyidonojirimycin (...
Scheme 18: Synthesis of L-1-deoxyaltronojirimycin (96).
Scheme 19: Synthesis of 1-deoxymannonojirimycin (63) and 1-deoxyaltronojirimycin (65).
Scheme 20: Synthesis of 5-des(hydroxymethyl)-1-deoxymannonojirimycin (111) and 5-des(hydroxymethyl)-1-deoxynoj...
Scheme 21: Synthesis of D-1-deoxygulonojirimycin (91) and L-1-deoxyallonojirimycin (122).
Scheme 22: Total synthesis of fagomine (129), 3-epi-fagomine (126) and 3,4-di-epi-fagomine (130).
Scheme 23: Total synthesis of (+)-adenophorine (135).
Scheme 24: Total synthesis of (+)-5-deoxyadenophorine (138) and analogues 142–145.
Scheme 25: Synthesis by RCM of 1,6-dideoxy-1,6-iminoheptitols 148 and 149.
Scheme 26: Synthesis by RCM of oxazolidinyl azacycles 152 and 154.
Scheme 27: Representative azepane-based iminocyclitols.
Scheme 28: Synthesis of hydroxymethyl-1-(4-methylphenylsulfonyl)azepane 3,4,5-triol (169).
Scheme 29: Synthesis by RCM of tetrahydropyridin-3-ol 171 and tetrahydroazepin-3-ol 173.
Beilstein J. Org. Chem. 2011, 7, 622–630, doi:10.3762/bjoc.7.73
Graphical Abstract
Scheme 1: Gold-catalyzed cyclization of 4-allenyl-2-azetidinones for the preparation of bicyclic β-lactams.
Scheme 2: Possible catalytic cycle for the gold-catalyzed cyclization of 4-allenyl-2-azetidinones.
Scheme 3: Gold- and iron-catalyzed chemodivergent cyclization of ene-allenols for the preparation of oxacycli...
Scheme 4: Gold-catalyzed cyclization of hydroxyallenes for the preparation of five-membered oxacyclic β-lacta...
Figure 1: Free energy profile [kcal mol–1] for the transformation of γ-allenol I into the tetrahydrofuran typ...
Scheme 5: Possible catalytic cycle for the gold-catalyzed cyclization of hydroxyallenes.
Scheme 6: Gold-catalyzed cyclization of MOM-protected α-hydroxyallenes for the preparation of five-membered o...
Scheme 7: Gold-catalyzed cyclization of MOM-protected γ-hydroxyallenes for the preparation of seven-membered ...
Scheme 8: Possible catalytic cycle for the gold-catalyzed cyclization of MOM protected γ-allenol derivatives....
Scheme 9: Au(III)-catalyzed heterocyclization reaction of MOM protected γ-allenol derivative 14a.
Scheme 10: Precious metal-catalyzed formation of benzo-fused pyrrolizinones from N-(2-alkynylphenyl)-β-lactams....
Scheme 11: Gold-catalyzed formation of 5,6-dihydro-8H-indolizin-7-ones from N-(pent-2-en-4-ynyl)-β-lactams.
Scheme 12: Gold-catalyzed formation of non-fused tetrahydrofuryl-β-lactam hemiacetals from 2-azetidinone-tethe...
Scheme 13: Gold-catalyzed formation of spiro tetrahydrofuryl-β-lactam hemiacetals from 2-azetidinone-tethered ...
Scheme 14: Gold-catalyzed formation of fused tetrahydrofuryl-β-lactam hemiacetals from 2-azetidinone-tethered ...
Scheme 15: Possible catalytic cycle for the gold-catalyzed cyclization of MOM protected alkynol derivatives.
Scheme 16: Gold/Brønsted acid co-catalyzed formation of bridged β-lactam acetals from 2-azetidinone-tethered a...
Beilstein J. Org. Chem. 2010, 6, No. 6, doi:10.3762/bjoc.6.6
Graphical Abstract
Scheme 1: AlCl3-mediated reaction between amyl chloride and benzene as developed by Friedel and Crafts.
Figure 1: Most often used metal salts for catalytic FC alkylations and hydroarylations of arenes.
Figure 2: 1,1-diarylalkanes with biological activity.
Scheme 2: Alkylating reagents and side products produced.
Scheme 3: Initially reported TeCl4-mediated FC alkylation of 1-penylethanol with toluene.
Scheme 4: Sc(OTf)3-catalyzed FC benzylation of arenes.
Scheme 5: Reductive FC alkylation of arenes with arenecarbaldehydes.
Scheme 6: Iron(III)-catalyzed FC benzylation of arenes and heteroarenes.
Scheme 7: A gold(III)-catalyzed route to beclobrate.
Scheme 8: Catalytic FC-type alkylations of 1,3-dicarbonyl compounds.
Scheme 9: Iron(III)-catalyzed synthesis of phenprocoumon.
Scheme 10: Bi(OTf)3-catalyzed FC alkylation of benzyl alcohols developed by Rueping et al.
Scheme 11: (A) Bi(OTf)3-catalyzed intramolecular FC alkylation as an efficient route to substituted fulvenes. ...
Scheme 12: FC-type glycosylation of 1,2-dimethylindole and trimethoxybenzene.
Scheme 13: FC alkylation with highly reactive ferrocenyl- and benzyl alcohols. The reaction proceeds even with...
Scheme 14: Reductive FC alkylation of arenes with benzaldehyde and acetophenone catalyzed by the Ir-carbene co...
Scheme 15: Formal synthesis of 1,1-diarylalkanes from benzyl alcohols and styrenes.
Scheme 16: (A) Mo-catalyzed hydroarylation of styrenes and cyclohexenes. (B) Hydroalkylation–cyclization casca...
Scheme 17: Bi(III)-catalyzed hydroarylation of styrenes with arenes and heteroarenes.
Scheme 18: BiCl3-catalyzed ene/FC alkylation reaction cascade – A fast access to highly arylated dihydroindene...
Scheme 19: Au(I)/Ag(I)-catalyzed hydroarylation of indoles with styrenes, aliphatic and cyclic alkenes.
Scheme 20: First transition-metal-catalyzed ortho-hydroarylation developed by Beller et al.
Scheme 21: (A) Ti(IV)-mediated rearrangement of an N-benzylated aniline to the corresponding ortho-alkylated a...
Scheme 22: Dibenzylation of aniline gives potentially useful amine-based ligands in a one-step procedure.
Scheme 23: FC-type alkylations with allyl alcohols as alkylating reagents – linear vs. branched product format...
Scheme 24: (A) First catalytic FC allylation and cinnamylation using allyl alcohols and its derivatives. (B) E...
Scheme 25: FC allylation/cyclization reaction yielding substituted chromanes.
Scheme 26: Synthesis of (all-rac)-α-tocopherol utilizing Lewis- and strong Brønsted-acids.
Scheme 27: Au(III)-catalyzed cinnamylation of arenes.
Scheme 28: “Exhaustive” allylation of benzene-1,3,5-triol.
Scheme 29: Palladium-catalyzed allylation of indole.
Scheme 30: Pd-catalyzed synthesis of pyrroloindoles from L-tryptophane.
Scheme 31: Ru(IV)-catalyzed allylation of indole and pyrroles with unique regioselectivity.
Scheme 32: Silver(I)-catalyzed intramolecular FC-type allylation of arenes and heteroarenes.
Scheme 33: FC-type alkylations of arenes using propargyl alcohols.
Scheme 34: (A) Propargylation of arenes with stoichiometric amounts of the Ru-allenylidene complex 86. (B) Fir...
Scheme 35: Diruthenium-catalyzed formation of chromenes and 1H-naphtho[2,1-b]pyrans.
Scheme 36: Rhenium(V)-catalyzed FC propargylations as a first step in the total synthesis of podophyllotoxin, ...
Scheme 37: Scandium-catalyzed arylation of 3-sulfanyl- and 3-selanylpropargyl alcohols.
Scheme 38: Synthesis of 1,3-diarylpropynes via direct coupling of propargyl trichloracetimidates and arenes.
Scheme 39: Diastereoselective substitutions of benzyl alcohols.
Scheme 40: (A) First diastereoselective FC alkylations developed by Bach et al. (B) anti-Selective FC alkylati...
Scheme 41: Diastereoselective AuCl3-catalyzed FC alkylation.
Scheme 42: Bi(OTf)3-catalyzed alkylation of α-chiral benzyl acetates with silyl enol ethers.
Scheme 43: Bi(OTf)3-catalyzed diastereoselective substitution of propargyl acetates.
Scheme 44: Nucelophilic substitution of enantioenriched ferrocenyl alcohols.
Scheme 45: First catalytic enantioselective propargylation of arenes.
Beilstein J. Org. Chem. 2008, 4, No. 48, doi:10.3762/bjoc.4.48
Graphical Abstract
Scheme 1: Total synthesis of longifolicin by Marshall’s group.
Scheme 2: Total synthesis of corossoline by Tanaka’s group.
Scheme 3: Total synthesis of corossoline by Wu’s group.
Scheme 4: Total synthesis of pseudo-annonacin A by Hanessian’s group.
Scheme 5: Total synthesis of tonkinecin by Wu’s group.
Scheme 6: Total synthesis of gigantetrocin A by Shi’s group.
Scheme 7: Total synthesis of annonacin by Wu’s group.
Scheme 8: Total synthesis of solamin by Kitahara’s group.
Scheme 9: Total synthesis of solamin by Mioskowski’s group.
Scheme 10: Total synthesis of cis-solamin by Makabe’s group.
Scheme 11: Total synthesis of cis-solamin by Brown’s group.
Scheme 12: The formal synthesis of (+)-cis-solamin by Donohoe’s group.
Scheme 13: Total synthesis of cis-solamin by Stark’s group.
Scheme 14: Total synthesis of mosin B by Tanaka’s group.
Scheme 15: Total synthesis of longicin by Hanessian’s group.
Scheme 16: Total synthesis of murisolin and 16,19-cis-murisolin by Tanaka’s group.
Scheme 17: Synthesis of a stereoisomer library of (+)-murisolin by Curran’s group.
Scheme 18: Total synthesis of murisolin by Makabe’s group.
Scheme 19: Total synthesis of reticulatain-1 by Makabe’s group.
Scheme 20: Total synthesis of muricatetrocin C by Ley’s group.
Scheme 21: Total synthesis of (4R,12S,15S,16S,19R,20R,34S)-muricatetrocin (146) and (4R,12R,15S,16S,19R,20R,34S...
Scheme 22: Total synthesis of parviflorin by Hoye’s group.
Scheme 23: Total synthesis of parviflorin by Trost’s group.
Scheme 24: Total synthesis of trilobacin by Sinha’s group.
Scheme 25: Total synthesis of 15-epi-annonin I 181b by Scharf’s group.
Scheme 26: Total synthesis of squamocin A and squamocin D by Scharf’s group.
Scheme 27: Total synthesis of asiminocin by Marshall’s group.
Scheme 28: Total synthesis of asiminecin by Marshall’s group.
Scheme 29: Total synthesis of (+)-(30S)-bullanin by Marshall’s group.
Scheme 30: Total synthesis of uvaricin by the group of Sinha and Keinan.
Scheme 31: Formal synthesis of uvaricin by Burke’s group.
Scheme 32: Total synthesis of trilobin by Marshall’s group.
Scheme 33: Total synthesis of trilobin by the group of Sinha and Keinan.
Scheme 34: Total synthesis of asimilobin by the group of Wang and Shi.
Scheme 35: Total synthesis of squamotacin by the group of Sinha and Keinan.
Scheme 36: Total synthesis of asimicin by Marshall’s group.
Scheme 37: Total synthesis of asimicin by the group of Sinha and Keinan.
Scheme 38: Total synthesis of asimicin by Roush’s group.
Scheme 39: Total synthesis of asimicin by Marshall’s group.
Scheme 40: Total synthesis of 10-hydroxyasimicin by Ley’s group.
Scheme 41: Total synthesis of asimin by Marshall’s group.
Scheme 42: Total synthesis of bullatacin by the group of Sinha and Keinan.
Scheme 43: Total synthesis of bullatacin by Roush’s group.
Scheme 44: Total synthesis of bullatacin by Pagenkopf’s group.
Scheme 45: Total synthesis of rollidecins C and D by the group of Sinha and Keinan.
Scheme 46: Total synthesis of 30(S)-hydroxybullatacin by Marshall’s group.
Scheme 47: Total synthesis of uvarigrandin A and 5(R)-uvarigrandin A by Marshall’s group.
Scheme 48: Total synthesis of membranacin by Brown’s group.
Scheme 49: Total synthesis of membranacin by Lee’s group.
Scheme 50: Total synthesis of rolliniastatin 1 and rollimembrin by Lee’s group.
Scheme 51: Total synthesis of longimicin D by the group of Maezaki and Tanaka.
Scheme 52: Total synthesis of the structure proposed for mucoxin by Borhan’s group.
Scheme 53: Modular synthesis of adjacent bis-THF annonaceous acetogenins by Marshall’s group.
Scheme 54: Total synthesis of 4-deoxygigantecin by Tanaka’s group.
Scheme 55: Total synthesis of squamostatins D by Marshall’s group.
Scheme 56: Total synthesis of gigantecin by Crimmins’s group.
Scheme 57: Total synthesis of gigantecin by Hoye’s group.
Scheme 58: Total synthesis of cis-sylvaticin by Donohoe’s group.
Scheme 59: Total synthesis of 17(S),18(S)-goniocin by Sinha’s group.
Scheme 60: Total synthesis of goniocin and cyclogoniodenin T by the group of Sinha and Keinan.
Scheme 61: Total synthesis of jimenezin by Takahashi’s group.
Scheme 62: Total synthesis of jimenezin by Lee’s group.
Scheme 63: Total synthesis of jimenezin by Hoffmann’s group.
Scheme 64: Total synthesis of muconin by Jacobsen’s group.
Scheme 65: Total synthesis of (+)-muconin by Kitahara’s group.
Scheme 66: Total synthesis of muconin by Takahashi’s group.
Scheme 67: Total synthesis of muconin by the group of Yoshimitsu and Nagaoka.
Scheme 68: Total synthesis of mucocin by the group of Sinha and Keinan.
Scheme 69: Total synthesis of mucocin by Takahashi’s group.
Scheme 70: Total synthesis of (−)-mucocin by Koert’s group.
Scheme 71: Total synthesis of mucocin by the group of Takahashi and Nakata.
Scheme 72: Total synthesis of mucocin by Evans’s group.
Scheme 73: Total synthesis of mucocin by Mootoo’s group.
Scheme 74: Total synthesis of (−)-mucocin by Crimmins’s group.
Scheme 75: Total synthesis of pyranicin by the group of Takahashi and Nakata.
Scheme 76: Total synthesis of pyranicin by Rein’s group.
Scheme 77: Total synthesis of proposed pyragonicin by the group of Takahashi and Nakata.
Scheme 78: Total synthesis of pyragonicin by Rein’s group.
Scheme 79: Total synthesis of pyragonicin by Takahashi’s group.
Scheme 80: Total synthesis of squamostanal A by Figadère’s group.
Scheme 81: Total synthesis of diepomuricanin by Tanaka’s group.
Scheme 82: Total synthesis of (−)-muricatacin [(R,R)-373a] and its enantiomer (+)-muricatacin [(S,S)-373b] by ...
Scheme 83: Total synthesis of epi-muricatacin (+)-(S,R)-373c and (−)-(R,S)-373d by Scharf’s group.
Scheme 84: Total synthesis of (−)-muricatacin 373a and 5-epi-(−)-muricatacin 373d by Uang’s group.
Scheme 85: Total synthesis of four stereoisomers of muricatacin by Yoon’s group.
Scheme 86: Total synthesis of (+)-muricatacin by Figadère’s group.
Scheme 87: Total synthesis of (+)-epi-muricatacin and (−)-muricatacin by Couladouros’s group.
Scheme 88: Total synthesis of muricatacin by Trost’s group.
Scheme 89: Total synthesis of (−)-(4R,5R)-muricatacin by Heck and Mioskowski’s group.
Scheme 90: Total synthesis of muricatacin (−)-373a by the group of Carda and Marco.
Scheme 91: Total synthesis of (−)- and (+)-muricatacin by Popsavin’s group.
Scheme 92: Total synthesis of (−)-muricatacin by the group of Bernard and Piras.
Scheme 93: Total synthesis of (−)-muricatacin by the group of Yoshimitsu and Nagaoka.
Scheme 94: Total synthesis of (−)-muricatacin by Quinn’s group.
Scheme 95: Total synthesis of montecristin by Brückner’s group.
Scheme 96: Total synthesis of (−)-acaterin by the group of Franck and Figadère.
Scheme 97: Total synthesis of (−)-acaterin by Singh’s group.
Scheme 98: Total synthesis of (−)-acaterin by Kumar’s group.
Scheme 99: Total synthesis of rollicosin by Quinn’s group.
Scheme 100: Total synthesis of Rollicosin by Makabe’s group.
Scheme 101: Total synthesis of squamostolide by Makabe’s group.
Scheme 102: Total synthesis of tonkinelin by Makabe’s group.