Search results

Search for "azide–alkyne cycloaddition" in Full Text gives 99 result(s) in Beilstein Journal of Organic Chemistry.

Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

  • Markus Börgardts and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2017, 13, 768–778, doi:10.3762/bjoc.13.76

Graphical Abstract
  • functionalization can be achieved upon ligating a triethylsiloxy-functionalized azide and a terminal alkynyl-functionalized luminophore by CuAAC (Cu-catalyzed azidealkyne cycloaddition) [21][22][23]. Commencing from a 2-hydroxy-substituted Nile red 1 or 3-hydroxymethylperylene (2) the alkyne-substituted
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2017

Fast and efficient synthesis of microporous polymer nanomembranes via light-induced click reaction

  • Qi An,
  • Youssef Hassan,
  • Xiaotong Yan,
  • Peter Krolla-Sidenstein,
  • Tawheed Mohammed,
  • Mathias Lang,
  • Stefan Bräse and
  • Manuel Tsotsalas

Beilstein J. Org. Chem. 2017, 13, 558–563, doi:10.3762/bjoc.13.54

Graphical Abstract
  • solid liquid interfacial layer-by-layer (LbL) synthesis of CMP-nanomembranes via Cu catalyzed azidealkyne cycloaddition (CuAAC). However, this process featured very long reaction times and limited scalability. Herein we present the synthesis of surface grown CMP thin films and nanomembranes via light
  • catalyzed azidealkyne cycloaddition (CuAAC) approach, respectively [16]. These procedures are still limited to conductive substrates or associated with long reaction times. In this work, we present a novel strategy for the LbL synthesis of CMP thin films and nanomembranes, using the light-induced and
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2017

Solid-phase enrichment and analysis of electrophilic natural products

  • Frank Wesche,
  • Yue He and
  • Helge B. Bode

Beilstein J. Org. Chem. 2017, 13, 405–409, doi:10.3762/bjoc.13.43

Graphical Abstract
  • ). Furthermore, the molecular formula of the cleaved azidealkyne cycloaddition product 3 was confirmed by HPLC–HRMS (calcd mass: m/z 567.2636 [M + H]+, found: m/z 567.2635 [M + H]+, Δppm = 0.1). Compound 1 could hardly be detected in extracts from standard growth media but was detected from infected insects and
  • dinitrogen (−28) as characteristic fragments for CARR adducts. Principle of azidation of XAD extracts from P. luminescens TT01 containing 1 and subsequent azide enrichment with CARR (2). After the vicinal azido alcohol is covalently bound to the resin through an azidealkyne cycloaddition, compound 3 is
  • tested strains, calculated molecular formulas of possible azidealkyne cycloaddition products, and the molecular formulas of the putative parent compounds derived from subtraction of the azide and CARR-derived moiety (C13H19N4O2S). Supporting Information Supporting Information File 30: Materials
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2017

Iodination of carbohydrate-derived 1,2-oxazines to enantiopure 5-iodo-3,6-dihydro-2H-1,2-oxazines and subsequent palladium-catalyzed cross-coupling reactions

  • Michal Medvecký,
  • Igor Linder,
  • Luise Schefzig,
  • Hans-Ulrich Reissig and
  • Reinhold Zimmer

Beilstein J. Org. Chem. 2016, 12, 2898–2905, doi:10.3762/bjoc.12.289

Graphical Abstract
  • -oxazines bearing the newly installed alkynyl group at C-5 are ideal candidates for efficient subsequent transformations. A very popular and widely applied reaction of terminal alkynes is the copper-catalyzed azidealkyne cycloaddition, also termed as click reaction, efficiently leading to 1,4-disubstituted
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2016

Dinuclear thiazolylidene copper complex as highly active catalyst for azid–alkyne cycloadditions

  • Anne L. Schöffler,
  • Ata Makarem,
  • Frank Rominger and
  • Bernd F. Straub

Beilstein J. Org. Chem. 2016, 12, 1566–1572, doi:10.3762/bjoc.12.151

Graphical Abstract
  • -heterocyclic carbene, linker, sacrificial ligand, and counter ion. Keywords: catalysis; click; copper; CuAAC; N-heterocyclic carbene; thiazole; Introduction The copper-catalyzed azidealkyne cycloaddition (CuAAC) is one of the most important “click” reactions for the facile covalent linking of two molecules
  • Anne L. Schoffler Ata Makarem Frank Rominger Bernd F. Straub Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany 10.3762/bjoc.12.151 Abstract A dinuclear N-heterocyclic carbene (NHC) copper complex efficiently catalyzes azidealkyne
  • cycloaddition (CuAAC) “click” reactions. The ancillary ligand comprises two 4,5-dimethyl-1,3-thiazol-2-ylidene units and an ethylene linker. The three-step preparation of the complex from commercially available starting compounds is more straightforward and cost-efficient than that of the previously described
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2016

Application of Cu(I)-catalyzed azide–alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA

  • Svetlana V. Vasilyeva,
  • Vyacheslav V. Filichev and
  • Alexandre S. Boutorine

Beilstein J. Org. Chem. 2016, 12, 1348–1360, doi:10.3762/bjoc.12.128

Graphical Abstract
  • and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France 10.3762/bjoc.12.128 Abstract Efficient protocols based on Cu(I)-catalyzed azidealkyne cycloaddition were developed for the
  • helices by TFO-MGB conjugates was evaluated by gel-shift experiments. The presence of MGB in these conjugates did not affect the binding parameters (affinity and triplex stability) of the parent TFOs. Keywords: binding affinity; click chemistry; Cu(I)-catalyzed azidealkyne cycloaddition; pyrrole
  • experience, these reactions are not suitable for TINA-TFO derivatives due to excessive formation of side products. Copper(I)-catalyzed azidealkyne cycloaddition (CuAAC) as a variation of the Huisgen 1,3-dipolar cycloaddition has become a widely used conjugation method in which the stereoselective formation
PDF
Album
Supp Info
Full Research Paper
Published 30 Jun 2016

Copper-catalyzed [3 + 2] cycloaddition of (phenylethynyl)di-p-tolylstibane with organic azides

  • Mizuki Yamada,
  • Mio Matsumura,
  • Yuki Uchida,
  • Masatoshi Kawahata,
  • Yuki Murata,
  • Naoki Kakusawa,
  • Kentaro Yamaguchi and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2016, 12, 1309–1313, doi:10.3762/bjoc.12.123

Graphical Abstract
  • : cycloaddition; copper catalyst; ethynylstibane; organic azide; 1,2,3-triazole; Introduction The 1,3-dipolar azidealkyne cycloaddition (AAC) has been effective for the synthesis of a wide variety of 1,2,3-triazoles [1]. However, this reaction has some limitations such as the requirement of high temperature and
  • 3a with NOBF4 afforded pentavalent organoantimony compound 6 in 85% yield. It is noteworthy that 5-bismuthanotriazole was demetallated upon reaction with NOBF4 to give the corresponding 5-nitroso compound [24]. Conclusion In conclusion, the Cu-catalyzed azidealkyne cycloaddition of (phenylethynyl)di
PDF
Album
Supp Info
Letter
Published 23 Jun 2016

Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties

  • Shaojin Gu,
  • Jiehao Du,
  • Jingjing Huang,
  • Huan Xia,
  • Ling Yang,
  • Weilin Xu and
  • Chunxin Lu

Beilstein J. Org. Chem. 2016, 12, 863–873, doi:10.3762/bjoc.12.85

Graphical Abstract
  • imidazolium backbone and N substituents. The copper–NHC complexes tested are highly active for the Cu-catalyzed azidealkyne cycloaddition (CuAAC) reaction in an air atmosphere at room temperature in a CH3CN solution. Complex 4 is the most efficient catalyst among these polynuclear complexes in an air
  • Inspired by the catalytic activity of Cu(I) species supported by NHC ligand in Cu-catalyzed azidealkyne cycloaddition (CuAAC) reaction under mild conditions, copper complexes 2–6 were investigated in the CuAAC reaction of azide and phenylacetylene. Firstly, we compared the catalytic activity of different
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2016

Creating molecular macrocycles for anion recognition

  • Amar H. Flood

Beilstein J. Org. Chem. 2016, 12, 611–627, doi:10.3762/bjoc.12.60

Graphical Abstract
  • house is just as satisfying as that of a new molecule and often takes the same amount of time (left: Franck Boston copyright 123RF.com). Timeline of anion-binding macrocycles. Click chemistry’s copper-catalyzed azidealkyne cycloaddition (CuAAC) forms 1,2,3-triazoles that stabilize anions by CH hydrogen
PDF
Album
Review
Published 31 Mar 2016

Enabling technologies and green processes in cyclodextrin chemistry

  • Giancarlo Cravotto,
  • Marina Caporaso,
  • Laszlo Jicsinszky and
  • Katia Martina

Beilstein J. Org. Chem. 2016, 12, 278–294, doi:10.3762/bjoc.12.30

Graphical Abstract
  • is the Cu(0)-catalysed azidealkyne cycloaddition (CuAAC) that can be further enhanced by simultaneous US/MW irradiation [18]. The formation of triazole-substituted CDs has been investigated by US irradiation and products can be synthesized in 2–4 hours (Scheme 2) [19]. Scondo et al. have reported a
PDF
Album
Review
Published 15 Feb 2016

Interactions of cyclodextrins and their derivatives with toxic organophosphorus compounds

  • Sophie Letort,
  • Sébastien Balieu,
  • William Erb,
  • Géraldine Gouhier and
  • François Estour

Beilstein J. Org. Chem. 2016, 12, 204–228, doi:10.3762/bjoc.12.23

Graphical Abstract
  • a cooper(I)-catalyzed azidealkyne cycloaddition between the 2’-azido-β-CD 31 and the alkyne derivatives 22a,b to access the corresponding monosubstituted CD 32a,b [76]. Synthesis of 3-monosubstituted β-CD derivatives: As the facial position of the reactive groups might modify the catalytic
  • partially-protected 2,6-dimethyl-β-CD (Scheme 7) [88]. Finally, CDs bearing an oxime (36 and 39a) or a hydroxamic acid (39b) group in position 3 were prepared as previously described via an azidealkyne cycloaddition (Scheme 7) [76][80]. Synthesis of difunctionalized β-CD derivatives: As the hydrolytic
  • disulfonylimidazole 42 to access a key intermediate easily converted to the corresponding di-2,3-mannoepoxido compound 43 (Scheme 8) [89]. The 3A,3B-diazido-3A,3B-dideoxy-bis(altro)-β-cyclodextrin 44 was then obtained by reaction of 43 with sodium azide and a copper(I)-catalyzed azidealkyne cycloaddition finally
PDF
Album
Review
Published 05 Feb 2016

Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry

  • Zhan-Jiang Zheng,
  • Ding Wang,
  • Zheng Xu and
  • Li-Wen Xu

Beilstein J. Org. Chem. 2015, 11, 2557–2576, doi:10.3762/bjoc.11.276

Graphical Abstract
  • Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China 10.3762/bjoc.11.276 Abstract The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles
  • investigated and recognized as an epoch-making progress in organic synthesis and green chemistry [11][12][13][14][15]. After many years of research, it was proven that the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC reaction) could be performed under various conditions according to the need of click
  • - and para-ethynylaniline, where both of the substrates worked well and the desired bistriazoles 34 could be obtained by a simple trituration and filtration procedure in good yield. The strain-promoted azide-alkyne cycloaddition (SPAAC) reaction could be well-performed without a Cu(І) catalyst. Such
PDF
Album
Review
Published 11 Dec 2015

Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition

  • Zachary L. Palchak,
  • Paula T. Nguyen and
  • Catharine H. Larsen

Beilstein J. Org. Chem. 2015, 11, 1425–1433, doi:10.3762/bjoc.11.154

Graphical Abstract
  • second portion of the sequence in Scheme 1: a tandem deprotection–cycloaddition of tetrasubstituted TIPS-protected propargylamines 4 that would allow them to react in situ with various azides 5 to give hindered triazoles 6. As a copper(I) catalyst is required for azidealkyne cycloaddition, the
  • -deprotection with azidealkyne cycloaddition, producing hindered triazoles in 6 hours. This tandem reaction was optimal with a copper(II) triflate and sodium ascorbate (NaAsc) as a mild reductant. The outcome that copper(II) triflate provides the highest yields for the one-pot deprotection/click reaction was
  • unexpected as it is not known as a catalyst for azidealkyne cycloaddition reactions [1][2]. Conclusion A tandem copper-catalyzed silyl deprotection/azide cycloaddition was developed for TIPS-protected tetrasubstituted propargylamines. These substrates are synthesized by a copper-catalyzed ketone–amine
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
  • (Scheme 51). [3 + 2] Cycloaddition (1,3-dipolar cycloaddition/click reaction): In 2010, Raghunathan and co-workers [185] have synthesized a C2-symmetric triazolophane by a copper(I)-catalyzed azide-alkyne cycloaddition, involving a click reaction. The dipropargyl fluorenyl derivative 299 was prepared from
  • ] have reported the synthesis of a glycotriazolophane 309 (carbohydrate–triazole–cyclophane hybrid) from a sugar amino acid via a copper-catalyzed azide-alkyne cycloaddition sequence. An aminosugar acid was identified as a useful building block to generate cyclophanes. Thus, the treatment of 304 with
PDF
Album
Review
Published 29 Jul 2015

Synthesis of novel N-cyclopentenyl-lactams using the Aubé reaction

  • Madhuri V. Shinde,
  • Rohini S. Ople,
  • Ekta Sangtani,
  • Rajesh Gonnade and
  • D. Srinivasa Reddy

Beilstein J. Org. Chem. 2015, 11, 1060–1067, doi:10.3762/bjoc.11.119

Graphical Abstract
  • Carell et al. in 2007 [40]. The work of Aubé on AAC (azidealkyne cycloaddition) chemistry also gives a good indication that equilibrating allylic azide stereoisomers can selectively participate in reactions [37][38][39][40][41][42][43][44][45]. In 2000, Aubé et al. proposed a mechanism for the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2015

Quarternization of 3-azido-1-propyne oligomers obtained by copper(I)-catalyzed azide–alkyne cycloaddition polymerization

  • Shun Nakano,
  • Akihito Hashidzume and
  • Takahiro Sato

Beilstein J. Org. Chem. 2015, 11, 1037–1042, doi:10.3762/bjoc.11.116

Graphical Abstract
  • . Keywords: 3-azido-1-propyne oligomer; CuAAC polymerization; hydrodynamic radius; methyl iodide; pulse-field-gradient spin-echo NMR; quarternization; Introduction The copper(I)-catalyzed azidealkyne cycloaddition (CuAAC) efficiently yields 1,4-disubstituted-1,2,3-triazole from rather stable azides and
  • alkyne cycloaddition (CuAAC) polymerization, were quarternized quantitatively with methyl iodide in sulfolane at 60 °C to obtain soluble oligomers. The conformation of the quarternized oligoAP in dilute DMSO-d6 solution was examined by pulse-field-gradient spin-echo NMR based on the touched bead model
  • Shun Nakano Akihito Hashidzume Takahiro Sato Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan 10.3762/bjoc.11.116 Abstract 3-Azido-1-propyne oligomer (oligoAP) samples, prepared by copper(I)-catalyzed azide
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2015

Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds

  • Michaela Mühlberg,
  • Michael G. Hoesl,
  • Christian Kuehne,
  • Jens Dernedde,
  • Nediljko Budisa and
  • Christian P. R. Hackenberger

Beilstein J. Org. Chem. 2015, 11, 784–791, doi:10.3762/bjoc.11.88

Graphical Abstract
  • combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azidealkyne cycloaddition
  • engineer multivalent glycoprotein conjugates, we have used the incorporation of non-canonical amino acids (NCAA) [13] by supplementation based incorporation (SPI) [14][15][16][17] in auxotroph expression systems followed by the chemoselective Cu-catalyzed azidealkyne cycloaddition (CuAAC) to attach
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2015

Multivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel–Crafts alkylations

  • Tommaso Pecchioli,
  • Manoj Kumar Muthyala,
  • Rainer Haag and
  • Mathias Christmann

Beilstein J. Org. Chem. 2015, 11, 730–738, doi:10.3762/bjoc.11.83

Graphical Abstract
  • according to well-established protocols [65]. Consequently, we adopted the Sharpless–Fokin modification for the Huisgen azidealkyne cycloaddition [66] to achieve the final immobilization of the modified imidazolidin-4-one onto the hyperbranched polymer and on the G1 dendron [65]. The progress of the
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2015

DNA display of glycoconjugates to emulate oligomeric interactions of glycans

  • Alexandre Novoa and
  • Nicolas Winssinger

Beilstein J. Org. Chem. 2015, 11, 707–719, doi:10.3762/bjoc.11.81

Graphical Abstract
  • 12) had marginal impact on the binding suggesting a saturation of binding site occupancy. For the structure with 6 units of maltose on each arm, a KD of 1 μM was measured which is 700-fold more potent (40-fold per sugar) than monovalent maltose. The advent of the copper-catalyzed azidealkyne
  • cycloaddition (CuAAC) [25][26] has naturally inspired the use of this powerful conjugation method to prepare glycan–DNA conjugates. Chevolot and co-workers used this method to conjugate glycans at the 3’-end of DNA [27]. The DNA synthesis was initiated with H-phosphonate that was converted to a phosphoramidate
PDF
Album
Review
Published 11 May 2015

Design, synthesis and photochemical properties of the first examples of iminosugar clusters based on fluorescent cores

  • Mathieu L. Lepage,
  • Antoine Mirloup,
  • Manon Ripoll,
  • Fabien Stauffert,
  • Anne Bodlenner,
  • Raymond Ziessel and
  • Philippe Compain

Beilstein J. Org. Chem. 2015, 11, 659–667, doi:10.3762/bjoc.11.74

Graphical Abstract
  • interest of the pyrene scaffold lies in its rigidity, a property that may favourably impact inhibitory multivalent effects [9][11][16][19]. A convergent approach comprising the attachment of azide-armed iminosugars 4 [11][12] on polyalkyne “clickable” scaffolds 5 and 6 via Cu(I)-catalyzed azidealkyne
  • cycloaddition (CuAAC) was performed for achieving our synthetic goals (Figure 2) [56][57]. With the objective of increasing water solubility and chemical stability in biological medium, triyne 6b, an analogue of F-BODIPY-based scaffold 6a was prepared by replacing the fluoro groups on the boron center with
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2015

Synthesis and surface grafting of a β-cyclodextrin dimer facilitating cooperative inclusion of 2,6-ANS

  • Lars W. Städe,
  • Thorbjørn T. Nielsen,
  • Laurent Duroux,
  • Reinhard Wimmer,
  • Kyoko Shimizu and
  • Kim L. Larsen

Beilstein J. Org. Chem. 2015, 11, 514–523, doi:10.3762/bjoc.11.58

Graphical Abstract
  • alkyne cycloaddition (CuAAC)) is very attractive [10][11]. CuAAC is known to be selective, proceed fast and produce a high yield under mild conditions. Further, the formed triazole is stable against oxidation, reduction and hydrolysis [10]. Concerning the design of β-CD dimers, it was recently
  • to parent β-CD) for the inclusion of lipophilic molecules [5][9]. The extensive research on the topic has generated a vast number of different β-CD-dimer constructs and methods for the synthesis thereof. Of these methods, synthesis by click chemistry (and specifically the copper(I)-catalyzed azide
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2015

Sequential decarboxylative azide–alkyne cycloaddition and dehydrogenative coupling reactions: one-pot synthesis of polycyclic fused triazoles

  • Kuppusamy Bharathimohan,
  • Thanasekaran Ponpandian,
  • A. Jafar Ahamed and
  • Nattamai Bhuvanesh

Beilstein J. Org. Chem. 2014, 10, 3031–3037, doi:10.3762/bjoc.10.321

Graphical Abstract
  • methodology is more convenient to produce the complex polycyclic molecules in a simple way. Keywords: copper(II) acetate; decarboxylative CuAAC; dehydrogenative coupling; fused triazoles; one-pot synthesis; Introduction The copper-catalyzed Huisgen [3 + 2] cycloaddition (or copper-catalyzed azidealkyne
  • cycloaddition, CuAAC) between an organic azide and a terminal alkyne is a well-established strategy for the construction of 1,4-disubstituted 1,2,3-triazoles [1][2][3][4]. In a recent development, this decarboxylative coupling reaction was well documented for the generation of C–C bonds [5]. This method has
PDF
Album
Supp Info
Letter
Published 17 Dec 2014

A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection

  • Stefanie Wolfram,
  • Hendryk Würfel,
  • Stefanie H. Habenicht,
  • Christine Lembke,
  • Phillipp Richter,
  • Eckhard Birckner,
  • Rainer Beckert and
  • Georg Pohnert

Beilstein J. Org. Chem. 2014, 10, 2470–2479, doi:10.3762/bjoc.10.258

Graphical Abstract
  • )-catalyzed azidealkyne cycloaddition (CuAAC) is often considered as the prototypical transformation [7][8][9]. Due to the mild conditions and the use of aqueous solvents it is an efficient tool for bioorthogonal chemistry even inside of living systems [10]. One application of this concept for functional
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2014

Expanding the scope of cyclopropene reporters for the detection of metabolically engineered glycoproteins by Diels–Alder reactions

  • Anne-Katrin Späte,
  • Verena F. Schart,
  • Julia Häfner,
  • Andrea Niederwieser,
  • Thomas U. Mayer and
  • Valentin Wittmann

Beilstein J. Org. Chem. 2014, 10, 2235–2242, doi:10.3762/bjoc.10.232

Graphical Abstract
  • fact that it can be orthogonal to the azidealkyne cycloaddition [22][26][27] which allows dual labeling of two different sugars within one experiment [19][21][23][24]. Among the dienophiles mentioned above, strained cyclopropenes have the highest reaction rates for DAinv reactions with tetrazines and
  • by simultaneous DAinv reaction and strain-promoted azidealkyne cycloaddition in a single step [24]. The potential of Ac4ManNCyoc (3) for labeling of sialoglycoconjugates was also recognized by others [30]. Sialic acids are prominently positioned at the outer end of membrane glycoproteins which makes
  • biological events, 1 represents a promising probe for future glycomics studies. Of special interest is the fact that cyclopropene tags can be combined with azidealkyne cycloaddition to achieve dual labeling of two different (sugar) moieties as was shown earlier [19][21][23][24][30]. Experimental General
PDF
Album
Supp Info
Full Research Paper
Published 22 Sep 2014

Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation

  • Meriem Smadhi,
  • Sophie de Bentzmann,
  • Anne Imberty,
  • Marc Gingras,
  • Raoudha Abderrahim and
  • Peter G. Goekjian

Beilstein J. Org. Chem. 2014, 10, 1981–1990, doi:10.3762/bjoc.10.206

Graphical Abstract
  • -triazine (2) as a key precursor [37]. The glycosyl units were incorporated via Cu(I)-catalyzed Huisgen cycloaddition with protected or unprotected glycosyl azides. We first investigated the Cu-catalyzed azidealkyne cycloaddition (CuAAC) of acetyl protected β-D-galactopyranosyl azide 3 [38], to tris
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2014
Other Beilstein-Institut Open Science Activities