Search results

Search for "cinchona" in Full Text gives 77 result(s) in Beilstein Journal of Organic Chemistry.

The aminoindanol core as a key scaffold in bifunctional organocatalysts

  • Isaac G. Sonsona,
  • Eugenia Marqués-López and
  • Raquel P. Herrera

Beilstein J. Org. Chem. 2016, 12, 505–523, doi:10.3762/bjoc.12.50

Graphical Abstract
  • origin of the asymmetric induction was proposed. In the plausible transition state TS12, acidic hydrogen atoms from both hydroxy and thiourea moieties would activate and fix the nitroalkene. Simultaneously, the tertiary amine of the cinchona framework would deprotonate the acidic proton of acetylacetone
  • in the chiral induction of the process. The authors proposed the transition state TS14, where the NH groups and the OH group of the squaramide would coordinate to the nitroalkene 3 through hydrogen-bonding interactions with the nitro group. Simultaneously, the amine in the cinchona alkaloid would
PDF
Album
Review
Published 14 Mar 2016

(Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

  • Giorgos Koutoulogenis,
  • Nikolaos Kaplaneris and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2016, 12, 462–495, doi:10.3762/bjoc.12.48

Graphical Abstract
  • excellent enantioselectivities (83–96% ee) [31]. In 2009, Cobb and co-workers disclosed the asymmetric intramolecular Michael addition of nitronates 62 onto conjugated esters utilizing the cinchona-derived thiourea 63 (Scheme 22) [32]. The reaction proceeded with excellent selectivity and afforded products
  • stereochemistry of the carbon bearing the R2 group. Very recently, Wang and co-workers used a cinchona alkaloid-based bifunctional thiourea 103 as the catalyst of choice to an organocatalytic domino process. This domino reaction involded a Michael cyclization–tautomerization reaction sequence between isatylidene
  • -unsaturated aldehydes 108, affording the desired products 110 in moderate to good yields and good to excellent stereoselectivities (Scheme 35). Recently, Wang and co-workers disclosed an asymmetric synthesis of dihydrocoumarins 113 containing adjacent stereogenic centers, utilizing the cinchona-derived
PDF
Album
Review
Published 10 Mar 2016

Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts

  • Laura A. Bryant,
  • Rossana Fanelli and
  • Alexander J. A. Cobb

Beilstein J. Org. Chem. 2016, 12, 429–443, doi:10.3762/bjoc.12.46

Graphical Abstract
  • Laura A. Bryant Rossana Fanelli Alexander J. A. Cobb School of Chemistry, Food and Pharmacy (SCFP), University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom 10.3762/bjoc.12.46 Abstract Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within
  • . Keywords: bifunctional; cupreidine; cinchona; cupreine; organocatalysis; Introduction The cinchona alkaloids, comprising quinine (QN), quinidine (QD), cinchonidine (CD), cinchonine (CN, Figure 1), and their derivatives have revolutionized asymmetric catalysis owing to their privileged structures. The
  • optimize their stereoselective behaviour has seen their utility burgeon dramatically over the last decade. Of particular note is the use of these cinchona systems within bifunctional thiourea catalysis [3][4][5][6][7][8][9][10][11][12]. Cupreine (CPN) and cupreidine (CPD), the non-natural demethylated
PDF
Album
Review
Published 07 Mar 2016

Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

  • Antonia Di Mola,
  • Maximilian Tiffner,
  • Francesco Scorzelli,
  • Laura Palombi,
  • Rosanna Filosa,
  • Paolo De Caprariis,
  • Mario Waser and
  • Antonio Massa

Beilstein J. Org. Chem. 2015, 11, 2591–2599, doi:10.3762/bjoc.11.279

Graphical Abstract
  • elaborations en route to the targets of medicinal interest (Figure 1). A high yield (usually >95%) and a maximum level of enantioselectivity of 74% ee were obtained but only in the presence of large amounts of cinchona alkaloid-based thiourea-containing organocatalysts (15 mol %) and after an unacceptably long
  • reaction time (72 h) [21][22]. Readily available chiral ammonium salts (e.g., cinchona alkaloid-based or commercially available Maruoka catalysts) were also investigated, but the enantioselectivity was lower, reaching a maximum of 46% ee [23]. Gratifyingly, a very efficient heterochiral crystallization
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2015

Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality

  • Jose I. Martínez,
  • Uxue Uria,
  • Maria Muñiz,
  • Efraím Reyes,
  • Luisa Carrillo and
  • Jose L. Vicario

Beilstein J. Org. Chem. 2015, 11, 2577–2583, doi:10.3762/bjoc.11.277

Graphical Abstract
  • advantage of the Michael addition of nitroalkenes and using two different bifunctional catalysts derived from cinchona alkaloids (catalyst 4) or cyclohexadiamine (catalyst 6). These catalysts, both with the same absolute backbone chirality, allow us to control the syn or anti selectivity obtaining the final
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
PDF
Album
Review
Published 29 Jul 2015

Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

  • Katherine M. Byrd

Beilstein J. Org. Chem. 2015, 11, 530–562, doi:10.3762/bjoc.11.60

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Preparation of phosphines through C–P bond formation

  • Iris Wauters,
  • Wouter Debrouwer and
  • Christian V. Stevens

Beilstein J. Org. Chem. 2014, 10, 1064–1096, doi:10.3762/bjoc.10.106

Graphical Abstract
  • used to carry out an asymmetric alkylation reaction (Scheme 4). The monoalkylation of phosphine–borane complex 15 was performed in the presence of the Cinchona alkaloid ammonium salt 16 [50]. However, the enantioselectivity of the reaction was low. Imamoto et al. prepared a new tetraphosphine ligand 19
  • diphenylphosphine to a range of nitroalkenes 56 has been described using a bifuntional Cinchona alkoid/thiourea catalyst 58 [132]. The catalyst 58 is able to simultaneously activate both the electrophilic and nucleophilic reagents. On one hand the thiourea presumably binds the nitro group while on the other hand
PDF
Album
Review
Published 09 May 2014

Primary-tertiary diamine-catalyzed Michael addition of ketones to isatylidenemalononitrile derivatives

  • Akshay Kumar and
  • Swapandeep Singh Chimni

Beilstein J. Org. Chem. 2014, 10, 929–935, doi:10.3762/bjoc.10.91

Graphical Abstract
  • been found to catalyze a variety of carbon–carbon bond-forming reactions [25][26][27][28][29][30]. Small peptides derived from acyclic amino acids, primary-secondary diamines, Cinchona-based primary amines, and thioureas with a primary amine functionality etc., have found many successful applications
  • 86% yield and 88% ee (Table 5, entry 9). A recently reported similar reaction catalyzed by Cinchona alkaloid-based primary amine catalyst requires high catalyst loading and is only suitable for N-unprotected isatylidenemalononitrile derivatives [5]. In contrast, our methodology is suitable for both N
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2014

Addition of H-phosphonates to quinine-derived carbonyl compounds. An unexpected C9 phosphonate–phosphate rearrangement and tandem intramolecular piperidine elimination

  • Łukasz Górecki,
  • Artur Mucha and
  • Paweł Kafarski

Beilstein J. Org. Chem. 2014, 10, 883–889, doi:10.3762/bjoc.10.85

Graphical Abstract
  • ; Introduction Medicinal, organocatalytic and stereoselective properties of quinine make it the most prominent representative of Cinchona alkaloids [1], a group of natural compounds of a unique three-dimensional structure. The structure involves a particular arrangement of two rigid heterocyclic fragments
  • novel contribution to the reactivity of quinine although similar eliminations of piperidine in Cinchona alkaloids have been reported in the literature. Accordingly, heating of quinine or derivatives in acids provided either quino-/cinchotoxine ketones or their tautomeric enol esters, depending on the
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2014

Stereoselectively fluorinated N-heterocycles: a brief survey

  • Xiang-Guo Hu and
  • Luke Hunter

Beilstein J. Org. Chem. 2013, 9, 2696–2708, doi:10.3762/bjoc.9.306

Graphical Abstract
  • derivatives bearing a pendant nitrogen nucleophile, and the source of chirality was a substoichiometric quantity of the cinchona alkaloid derivative (DHQ)2PHAL (70). This method was shown to work very well with several different pendant nucleophiles, but the N-acetamido nucleophile was found to be optimal
PDF
Album
Review
Published 29 Nov 2013

Asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with α-fluoro-β-keto esters

  • Lin Yan,
  • Zhiqiang Han,
  • Bo Zhu,
  • Caiyun Yang,
  • Choon-Hong Tan and
  • Zhiyong Jiang

Beilstein J. Org. Chem. 2013, 9, 1853–1857, doi:10.3762/bjoc.9.216

Graphical Abstract
  • and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 10.3762/bjoc.9.216 Abstract In the presence of a commercially available Cinchona alkaloid as catalyst, the asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates, with α-fluoro-β-keto esters as
  • compounds with chiral quaternary carbon centres containing a fluorine atom. Results and Discussion In the preliminary experiments, we investigated the reaction of α-fluoro-β-ketoester 1a with MBH carbonate 2a as the model substrate, in the presence of several commercially available Cinchona alkaloids as
  •  1, entry 2). Next, we screened a series of C2-symmetric bis-Cinchona alkaloids as catalysts under the same conditions (Table 1, entries 3–7). (DHQD)2PHAL showed moderate catalytic activity; 3aa was obtained in 67% yield with 71% ee and 60:40 dr (entry 3). The effects of solvent were then
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2013

Organocatalyzed enantioselective desymmetrization of aziridines and epoxides

  • Ping-An Wang

Beilstein J. Org. Chem. 2013, 9, 1677–1695, doi:10.3762/bjoc.9.192

Graphical Abstract
  • including cinchona alkaloid derivatives, chiral phosphoric acids, chiral amino alcohols, chiral thioureas, chiral guanidines, and chiral 1,2,3-triazolium chlorides. In this review, the research work of enantioselective desymmetrization of meso-aziridines is organized into sections according to the employed
  • organocatalysts. Cinchona alkaloid derivatives The first organocatalytic enantioselective desymmetrization of meso-aziridines was discovered by Hou and co-workers in 2007 [40] with various arylthiols as nucleophiles in CCl4 at 0 °C in the presence of cinchonine-derived phase-transfer catalysts (PTCs, Figure 2, OC
  • -1 to OC-6). The substituent on the bridgehead nitrogen of cinchona alkaloids has a great impact on the enantioselectivity of the reactions. The catalyst OC-2 with 9-anthracenylmethyl on the bridgehead nitrogen is more efficient than other cinchona alkaloid-derived catalysts for the desymmetrization
PDF
Album
Review
Published 15 Aug 2013

Efficient synthesis of β’-amino-α,β-unsaturated ketones

  • Isabelle Abrunhosa-Thomas,
  • Aurélie Plas,
  • Nishanth Kandepedu,
  • Pierre Chalard and
  • Yves Troin

Beilstein J. Org. Chem. 2013, 9, 486–495, doi:10.3762/bjoc.9.52

Graphical Abstract
  • under different protocols in which the stereoselectivity of the reaction can be introduced through the use of a chiral catalyst [9][10] (Lewis acid, Brønsted acids, L-proline, Cinchona alkaloids derivatives, thioureas, etc.), or by the addition of chiral amines to α,β-unsaturated esters [11][12] or the
PDF
Album
Supp Info
Letter
Published 06 Mar 2013

Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

  • Pankaj Chauhan and
  • Swapandeep Singh Chimni

Beilstein J. Org. Chem. 2012, 8, 2132–2141, doi:10.3762/bjoc.8.240

Graphical Abstract
  • solvent-free conditions by using a planetary ball mill (Scheme 7) [46]. Cinchona-derived chiral squaramide IX, at low catalyst loading of 0.5 mol %, efficiently catalyses the solvent-free Michael reaction of acetylacetone (9) with various substituted nitroalkenes 7 in a short reaction time (5–30 minutes
  • stereoselective meso-anhydride ring opening represents an important approach for providing multiple stereogenic centres in the target molecule [55][56][57]. In this feat the Cinchona alkaloids have emerged as powerful organocatalysts. A ball-milling-assisted highly efficient asymmetric ring opening of meso
PDF
Album
Review
Published 06 Dec 2012

Organocatalytic tandem Michael addition reactions: A powerful access to the enantioselective synthesis of functionalized chromenes, thiochromenes and 1,2-dihydroquinolines

  • Chittaranjan Bhanja,
  • Satyaban Jena,
  • Sabita Nayak and
  • Seetaram Mohapatra

Beilstein J. Org. Chem. 2012, 8, 1668–1694, doi:10.3762/bjoc.8.191

Graphical Abstract
  • thiochromenes; and (3) Organocatalytic aza-Michael reactions to access functionalized 1,2-dihydroquinolines, using chiral proline and its derivatives (Figure 2), chiral bifunctional thioureas, cinchona alkaloids and other organocatalysts (Figure 3). For each reaction, the initial screening result of various
  • -cinchona bifunctional chiral organocatalyst XXXIb, the reaction of 2-mercaptobenzaldehydes 34 and α,β-unsaturated oxazolidinones 40 by a synergistic noncovalent hydrogen-bonding dual-activation strategy afforded the highly chiral thiochromenes 41 with excellent yields and enantioselectivities (Scheme 21
  • unprecedented asymmetric domino thio-Michael–Michael process, involving dynamic kinetic resolution, was reported by Wang et al. [72] using cinchona alkaloid amine-thiourea XXXIb as catalyst at a low catalytic loading of 2 mol %. Reaction of 3-(2-mercaptophenyl)-2-propenoic acid ethyl esters 50 with α,β
PDF
Album
Review
Published 04 Oct 2012

Organocatalytic asymmetric addition of malonates to unsaturated 1,4-diketones

  • Sergei Žari,
  • Tiiu Kailas,
  • Marina Kudrjashova,
  • Mario Öeren,
  • Ivar Järving,
  • Toomas Tamm,
  • Margus Lopp and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2012, 8, 1452–1457, doi:10.3762/bjoc.8.165

Graphical Abstract
  • unsaturated 1,4-diketones catalyzed by thiourea and squaramide derivatives with Cinchona alkaloids afforded the formation of a new C–C bond in high yields (up to 98%) and enantiomeric purities (up to 93%). The absolute configuration of the product was suggested from comparison of the experimental and
  • investigated the organocatalytic approach to the asymmetric desymmetrization of the title compounds with malonates. Three types of organocatalysts providing noncovalent interactions were used for this purpose: Cinchona alkaloids (I–V), thiourea derivatives (VI, VII) and squaramide derivatives (VIII, IX
  • high. Cinchona alkaloids (Table 1, entries 1–4) catalyzed the reaction with low stereoselectivity. There was a remarkable difference in their reaction rates. Quinine (II) and quinidine (IV, Table 1, entries 2 and 4) were more efficient than cinchonine (I) and cinchonidine (III, Table 1, entries 1 and 3
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012

Organocatalytic asymmetric Michael addition of unprotected 3-substituted oxindoles to 1,4-naphthoquinone

  • Jin-Sheng Yu,
  • Feng Zhou,
  • Yun-Lin Liu and
  • Jian Zhou

Beilstein J. Org. Chem. 2012, 8, 1360–1365, doi:10.3762/bjoc.8.157

Graphical Abstract
  • [26][27]. To construct the C3 quaternary stereogenic carbon center, we have designed a novel cinchona alkaloid-based phosphoramide bifunctional catalyst to realize a highly enantioselective Michael addition of both unprotected 3-alkyl- and 3-aryloxindoles to nitroolefins [28]. Based on these results
  • to report our initial results about the catalytic asymmetric Michael addition of unprotected 3-prochiral oxindoles to 1,4-naphthoquinone. Results and Discussion We began the reaction development by the evaluation of different chiral catalysts derived from cinchona alkaloids in the reaction of 3
  • -phenyloxindole 1a and 1,4-naphthoquinone (2a), with ethyl acetate (EtOAc) as the solvent at 0 °C (Table 1, Figure 1). A variety of bifunctional cinchona alkaloid-derived catalysts 5–9 were first tried, aiming to facilitate the reaction by the dual activation of both reaction partners, with H-bonding donor moiety
PDF
Album
Supp Info
Letter
Published 23 Aug 2012

Asymmetric organocatalytic decarboxylative Mannich reaction using β-keto acids: A new protocol for the synthesis of chiral β-amino ketones

  • Chunhui Jiang,
  • Fangrui Zhong and
  • Yixin Lu

Beilstein J. Org. Chem. 2012, 8, 1279–1283, doi:10.3762/bjoc.8.144

Graphical Abstract
  • tosylimine 1a and β-keto acid 2a in the presence of a range of bifunctional catalysts (Table 1). We first evaluated the catalytic effects of several cinchona alkaloid derivatives. Commercially available cinchonidine (CD-1) led to the formation of the product with disappointing enantioselectivity (Table 1
  • , entry 1). Quinine-derived sulfonamide [40], β-isocupreidine (β-ICD) [41][42] and biscinchona alkaloid (DHQ)2AQN were all found to be poor catalysts (Table 1, entries 2–4). On the other hand, cinchona alkaloid derived bifunctional thiourea tertiary amine catalysts afforded much improved results (Table 1
PDF
Album
Supp Info
Letter
Published 13 Aug 2012

Recyclable fluorous cinchona alkaloid ester as a chiral promoter for asymmetric fluorination of β-ketoesters

  • Wen-Bin Yi,
  • Xin Huang,
  • Zijuan Zhang,
  • Dian-Rong Zhu,
  • Chun Cai and
  • Wei Zhang

Beilstein J. Org. Chem. 2012, 8, 1233–1240, doi:10.3762/bjoc.8.138

Graphical Abstract
  • , Boston, MA 02125, USA 10.3762/bjoc.8.138 Abstract A fluorous cinchona alkaloid ester has been developed as a chiral promoter for the asymmetric fluorination of β-ketoesters. It has comparable reactivity and selectivity to the nonfluorous versions of cinchona alkaloids and can be easily recovered from
  • the reaction mixture by simple fluorous solid-phase extraction (F-SPE) and used for the next round of reaction without further purification. Keywords: asymmetric fluorination; β-ketoester; fluorous cinchona ester; organocatalysis; recyclable chiral promoter; Introduction Fluorinated organic
  • electrophilic reaction with Selectfluor (F-TEDA-BF4, 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)), as developed by Bank [7][8][9]. The Cahard [10][11][12] and Shibata [13][14] groups combined cinchona alkaloids and Selectfluor for asymmetric fluorination of substrates such as
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2012

Combined bead polymerization and Cinchona organocatalyst immobilization by thiol–ene addition

  • Kim A. Fredriksen,
  • Tor E. Kristensen and
  • Tore Hansen

Beilstein J. Org. Chem. 2012, 8, 1126–1133, doi:10.3762/bjoc.8.125

Graphical Abstract
  • immobilization of Cinchona organocatalysts using thiol–ene chemistry, in which catalyst immobilization and bead polymerization is combined in a single step. A solution of azo initiator, polyfunctional thiol, polyfunctional alkene and an unmodified Cinchona-derived organocatalyst in a solvent is suspended in
  • water and copolymerized on heating by thiol–ene additions. The resultant spherical and gel-type polymer beads have been evaluated as organocatalysts in catalytic asymmetric transformations. Keywords: asymmetric catalysis; Cinchona derivatives; organocatalysis; polymerization; thiol–ene reaction
  • . Such polymer beads have provided good to excellent results as organocatalysts in various asymmetric transformations [6][7]. Cinchona derivatives are used in several types of organocatalysts, and they are all equipped with a pendant vinylic functionality susceptible to activation by chemical
PDF
Album
Letter
Published 20 Jul 2012

Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters

  • Lukas Hintermann,
  • Mauro Perseghini and
  • Antonio Togni

Beilstein J. Org. Chem. 2011, 7, 1421–1435, doi:10.3762/bjoc.7.166

Graphical Abstract
  • (tetrafluoroborate); TEDA = triethylenediamine) [27][28][29] marked some important discoveries: First, a new generation of highly enantioselective chiral fluorinating reagents, derived by fluorine transfer [30] from F–TEDA to the quinuclidine portion of cinchona-alkaloids, was introduced by the groups of Cahard [31
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2011

Shelf-stable electrophilic trifluoromethylating reagents: A brief historical perspective

  • Norio Shibata,
  • Andrej Matsnev and
  • Dominique Cahard

Beilstein J. Org. Chem. 2010, 6, No. 65, doi:10.3762/bjoc.6.65

Graphical Abstract
  • % yield [17]. In 2008–2009, we found that chiral nonracemic cinchona alkaloids and guanidines act as Brønsted bases to generate ammonium or guanidinium enolates for the enantioselective electrophilic trifluoromethylation of β-keto esters with Umemoto reagents with good enantioselectivities in the range 60
PDF
Album
Review
Published 16 Jun 2010

Asymmetric reactions in continuous flow

  • Xiao Yin Mak,
  • Paola Laurino and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2009, 5, No. 19, doi:10.3762/bjoc.5.19

Graphical Abstract
  • yield observed between each run and without the need for catalyst regeneration, providing 78% total yield of 14 with 88% ee. Cinchona alkaloid derivatives have been featured in a number of solid support-based continuous flow asymmetric reactions. For example, a Wang-resin supported quinine derivative
  • also employed in a similar flow system for the asymmetric α-chlorination of acid chlorides (Scheme 7) [31][32]. This cinchona alkaloid derivative served the dual purpose of dehydrohalogenation and asymmetric induction, and was found to be reusable at least up to 100 times, after regeneration each time
PDF
Album
Review
Published 29 Apr 2009

C2-symmetric bisamidines: Chiral Brønsted bases catalysing the Diels- Alder reaction of anthrones

  • Deniz Akalay,
  • Gerd Dürner,
  • Jan W. Bats and
  • Michael W. Göbel

Beilstein J. Org. Chem. 2008, 4, No. 28, doi:10.3762/bjoc.4.28

Graphical Abstract
  • exerted by chiral Brønsted bases. Moderate to excellent stereoselectivities of products 3 have been reported using pyrrolidines 4 [1][2], cyclic guanidine 5 [3], or cinchona alkaloids 6 [4] as catalysts. Recently, we could promote this type of cycloaddition by metal-free bisoxazolines 7 in up to 70% ee
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2008
Other Beilstein-Institut Open Science Activities