Search results

Search for "photoredox catalysis" in Full Text gives 98 result(s) in Beilstein Journal of Organic Chemistry.

Visible-light-induced addition of carboxymethanide to styrene from monochloroacetic acid

  • Kaj M. van Vliet,
  • Nicole S. van Leeuwen,
  • Albert M. Brouwer and
  • Bas de Bruin

Beilstein J. Org. Chem. 2020, 16, 398–408, doi:10.3762/bjoc.16.38

Graphical Abstract
  • traditional reactivity of this compound. Here, we investigated the possibility of applying monochloroacetic acid as a substrate for photoredox catalysis with styrene to directly produce γ-phenyl-γ-butyrolactone. Instead of using nucleophilic substitution, we cleaved the carbon chlorine bond by single-electron
  • glycine and diethyl malonate, are based on nucleophilic substitution of the chlorine [6][7][8][9][10]. In an attempt to find new synthetic applications of monochloroacetic acid we turned our attention to photoredox catalysis. We were inspired by the rebirth of visible light photoredox catalysis, induced
  • , resulting in reactivity different from common two-electron pathways. Photoredox catalysis reactivity is very different from traditional redox reactions, and the same reactivity cannot be achieved by stoichiometric addition of both a reductant and an oxidant to a reaction mixture (as that would lead to a
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • compounds, including bioactive natural and nonnatural products, but also due to its impact on the discovery of pharmaceutical candidates and the total synthesis of intricate natural products. On the other hand, more recently, the field of photoredox catalysis has become an indispensable and unparalleled
  • in this vital area of research, to our best knowledge, this is the first review that focuses on ortho and para C–H functionalizations by photoredox catalysis to provide atom- and step-economic organic transformations. We are certain that this review will act as a promoter to highlight the application
  • of photoredox catalysts for the functionalization of inert bonds in the domain of synthetic organic chemistry. Keywords: dual catalysis; light; ortho and para C–H bond functionalization; photoredox catalysis; Introduction Over a short period of time, direct C–H bond functionalizations by photoredox
PDF
Album
Review
Published 26 Feb 2020

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
PDF
Album
Review
Published 23 Sep 2019

Naphthalene diimides with improved solubility for visible light photoredox catalysis

  • Barbara Reiß and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2019, 15, 2043–2051, doi:10.3762/bjoc.15.201

Graphical Abstract
  • light range between 520 nm and 640 nm. The irradiation by visible light together with the use of an organic dye instead of a transition metal complex as photoredox catalyst improve the sustainability and make photoredox catalysis “greener”. Keywords: chromophore; dyes; electrochemistry; photochemistry
  • ; photoredox catalysis; Introduction Photocatalysis couples the physical process of light absorption to an organic-chemical reaction by means of time, space and energetics. In order to apply visible light for photocatalysis despite its rather low energy this coupling requires to be mediated by a sensitizing
  • species – a photocatalyst. If the interacting mode between the sensitizer and the reactant is via charge transfer, it is named photoredox catalysis. This research field has been established over the past decade [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20]. In principle, it is a
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2019

A review of the total syntheses of triptolide

  • Xiang Zhang,
  • Zaozao Xiao and
  • Hongtao Xu

Beilstein J. Org. Chem. 2019, 15, 1984–1995, doi:10.3762/bjoc.15.194

Graphical Abstract
  • trimethylsilyl trifluoromethanesulfonate (TMSOTf) in a diastereoselective and stepwise manner. This novel methodology provides a shorter access to the intermediate 97, which is a key intermediate for the synthesis of triptolide. Recently, photoredox catalysis has emerged as a powerful and high-yielding method
PDF
Album
Review
Published 22 Aug 2019

Tandem copper and photoredox catalysis in photocatalytic alkene difunctionalization reactions

  • Nicholas L. Reed,
  • Madeline I. Herman,
  • Vladimir P. Miltchev and
  • Tehshik P. Yoon

Beilstein J. Org. Chem. 2019, 15, 351–356, doi:10.3762/bjoc.15.30

Graphical Abstract
  • ) salts proved to be unique in their ability to turn over the copper cocatalyst without deleteriously impacting the reactivity of the organoradical intermediates. Keywords: copper; diamination; oxidative functionalization; oxyamination; photoredox catalysis; radical; Introduction Over the past decade, a
  • photoinduced electron transfer processes. A major theme of research that has emerged from these studies is the application of various cocatalysts to intercept the organoradical intermediates of photoredox reactions and modulate their subsequent reactivity [5][6]. The combination of photoredox catalysis with
  • as a terminal oxidant. Moreover, much of the utility of photoredox catalysis has been predicated on its ability to generate radical intermediates under mild and operationally convenient conditions. The ability to intercept transient photogenerated organoradical intermediates and divert them towards
PDF
Album
Supp Info
Letter
Published 05 Feb 2019

Oxidative radical ring-opening/cyclization of cyclopropane derivatives

  • Yu Liu,
  • Qiao-Lin Wang,
  • Zan Chen,
  • Cong-Shan Zhou,
  • Bi-Quan Xiong,
  • Pan-Liang Zhang,
  • Chang-An Yang and
  • Quan Zhou

Beilstein J. Org. Chem. 2019, 15, 256–278, doi:10.3762/bjoc.15.23

Graphical Abstract
  • photoredox catalysis oxidative radical ring-opening and cyclization of cyclopropyl olefins 83 with bromides 84 for the synthesis of partially saturated naphthalenes 85 in moderate to excellent yields (Scheme 19) [97]. It was the first example for alkylation, ring-opening and cyclization cascade reaction of
  • the cyclopropyl olefins under photoredox catalysis. The alkylation reagents could be extended to other bromides, such as monofluoro-substituted bromides, trifluoro-substituted bromides, bromoacetonitrile and bromomalonate. This alkylation/ring-opening/cyclization was carried out by using Ir(ppy)2
PDF
Album
Review
Published 28 Jan 2019

N-Arylphenothiazines as strong donors for photoredox catalysis – pushing the frontiers of nucleophilic addition of alcohols to alkenes

  • Fabienne Speck,
  • David Rombach and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2019, 15, 52–59, doi:10.3762/bjoc.15.5

Graphical Abstract
  • broaden the substrate scope for the nucleophilic addition of methanol to styrenes through photoredox catalysis. These N-phenylphenothiazines differ by their electron-donating and electron-withdrawing substituents at the phenyl group, covering both, σ and π-type groups, in order to modulate their
  • absorbance and electrochemical characteristics. Among the synthesized compounds, alkylaminylated N-phenylphenothiazines were identified to be highly suitable for photoredox catalysis. The dialkylamino substituents of these N-phenylphenothiazines shift the estimated excited state reduction potential up to
  • after 20 h of irradiation. Keywords: addition; phenothiazine; photochemistry; photoredox catalysis; redox potential; Introduction Visible-light photoredox catalysis has become a precious tool in modern synthetic organic chemistry and experiences a continuously growing interest in industrial
PDF
Album
Supp Info
Full Research Paper
Published 04 Jan 2019

Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region

  • Aude-Héloise Bonardi,
  • Frédéric Dumur,
  • Guillaume Noirbent,
  • Jacques Lalevée and
  • Didier Gigmes

Beilstein J. Org. Chem. 2018, 14, 3025–3046, doi:10.3762/bjoc.14.282

Graphical Abstract
  • from adhesives, coatings, packaging materials, inks, paints, optics, 3D printing, microelectronics or textiles. From a synthetic viewpoint, photoredox catalysis, originally developed for organic chemistry, has recently been applied to the polymer synthesis, constituting a major breakthrough in polymer
  • networks. Keywords: photoinitiator; photopolymerization; photoredox catalysis; photoredox catalyst; Introduction Photopolymerization reactions are now widely used both in industry and in academic laboratories. These processes usually lead to the transformation of a liquid resin in a 3D solid polymer upon
  • catalytic cycles used in organic chemistry, the development of photoredox catalysis for photopolymerization reactions has been proposed. It has emerged as a significant innovation in the field of photoinitiated polymerization. Photoredox catalysis is a new strategy to generate radicals and/or cations upon
PDF
Album
Review
Published 12 Dec 2018

Synthesis of aryl sulfides via radical–radical cross coupling of electron-rich arenes using visible light photoredox catalysis

  • Amrita Das,
  • Mitasree Maity,
  • Simon Malcherek,
  • Burkhard König and
  • Julia Rehbein

Beilstein J. Org. Chem. 2018, 14, 2520–2528, doi:10.3762/bjoc.14.228

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

Microfluidic light-driven synthesis of tetracyclic molecular architectures

  • Javier Mateos,
  • Nicholas Meneghini,
  • Marcella Bonchio,
  • Nadia Marino,
  • Tommaso Carofiglio,
  • Xavier Companyó and
  • Luca Dell’Amico

Beilstein J. Org. Chem. 2018, 14, 2418–2424, doi:10.3762/bjoc.14.219

Graphical Abstract
  • molecules. Keywords: [4 + 2] photoenol; cycloaddition; flow chemistry; microfluidic photoreactor; photoredox catalysis; synthetic photochemistry; Introduction In recent years synthetic photochemistry has become highly sophisticated [1]. The opportunity of using renewable energy sources to transform and
PDF
Album
Supp Info
Letter
Published 17 Sep 2018

Applications of organocatalysed visible-light photoredox reactions for medicinal chemistry

  • Michael K. Bogdos,
  • Emmanuel Pinard and
  • John A. Murphy

Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179

Graphical Abstract
  • mechanistic considerations are highlighted in the text when appropriate. Keywords: C–H functionalisation; heterocycles; late-stage functionalisation; medicinal chemistry; organic dyes; organic photocatalysts; peptide chemistry; photoredox catalysis; Review 1 Introduction 1.1 Main advantages of
  • organocatalysed photoredox chemistry Photoredox catalysis is an emerging field in organic synthesis and has been the subject of many reviews in recent years [1][2][3][4][5][6][7][8][9]. Some cover the manipulation or installation of various functional groups [10][11][12][13][14][15][16][17], the synthesis of
  • ) components than traditional reactions. Organocatalysed photoredox catalysis combines the advantages of both these fields. Thus, it is not only a new field filled with exciting discoveries, but also is sustainable and beneficial in the long term. 1.2 General characteristics of photocatalysts 1.2.1 Brief
PDF
Album
Review
Published 03 Aug 2018

Investigations of alkynylbenziodoxole derivatives for radical alkynylations in photoredox catalysis

  • Yue Pan,
  • Kunfang Jia,
  • Yali Chen and
  • Yiyun Chen

Beilstein J. Org. Chem. 2018, 14, 1215–1221, doi:10.3762/bjoc.14.103

Graphical Abstract
  • radical; alkynylbenziodoxoles; photoredox catalysis; radical alkynylation; Introduction The introduction of the alkynyl group to organic molecules is an important synthetic transformation in organic synthesis [1][2][3][4]. Recently, cyclic iodine(III) reagents (CIR)-substituted alkynes
  • group first used alkynylbenziodoxoles for decarboxylative radical alkynylation under silver salt and persulfate conditions [19]. In 2014, the Chen group discovered that alkynylbenziodoxoles (BI-alkyne) readily participated in photoredox catalysis as the radical alkynylation reagent [20], after which
  • various applications in photoredox catalysis were reported [21][22][23][24][25][26][27]. Currently, the use of BI-alkyne for radical alkynylation is limited to unsubstituted alkynylbenziodoxoles. While effective, its reactivity with some radical precursors was compromised [19][20][21][22][23][24][25][26
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2018

Stepwise radical cation Diels–Alder reaction via multiple pathways

  • Ryo Shimizu,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 704–708, doi:10.3762/bjoc.14.59

Graphical Abstract
  • reported by Bauld in 1986 [16] and was elegantly revisited by Yoon in 2011 [17] in the field of photoredox catalysis (Scheme 1). The reaction was further studied by Ferreira and Shores [18], followed by a unique mechanistic investigation by Rappé [19]. Although most recent examples of the radical cation
PDF
Album
Supp Info
Letter
Published 27 Mar 2018

Diels–Alder cycloadditions of N-arylpyrroles via aryne intermediates using diaryliodonium salts

  • Huangguan Chen,
  • Jianwei Han and
  • Limin Wang

Beilstein J. Org. Chem. 2018, 14, 354–363, doi:10.3762/bjoc.14.23

Graphical Abstract
  • coupling products were obtained in moderate to good yields (Scheme 1a) [6]. Later in 2013, Xue and Xiao et al. developed a method of photoredox catalysis in the presence of [Ru(bpy)3]2+ with visible light for the coupling reaction of arenes with unprotected or N-substituted pyrroles, pyrrole substrates
PDF
Album
Supp Info
Letter
Published 06 Feb 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • trifluoromethylation smoothly to give the corresponding products in high yield. It represented a new example of combining transition metal and photoredox catalysis to achieve the trifluoromethylation of (hetero)aromatic boronic acids. Then, the same group [41] chose a more practical CF3 source, CF3SO2Na (Langlois
PDF
Album
Review
Published 17 Jan 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • ; Introduction Visible-light photoredox catalysis has developed into an important tool for organic synthesis in the last two decades. Energy-efficient and cheap visible-light-emitting diodes are perfect light sources allowing chemists now to conduct photocatalyzed reactions without special or expensive equipment
  • summarize the current developments of this emerging field of photoredox catalysis [1][2][3][4][5][6][7][8][9][10][11][12][13] in this review. Sulfur-containing molecules play important roles in many areas of chemistry and materials science. Many natural products, drugs, crop-protection chemicals or
  • formation of C–S bonds was published by Oderinde, Johannes and co-workers. They combined photoredox catalysis with transition metal catalysis [52][53][54][55] for the formation of C–S bonds (Scheme 21) [56]. The reaction proceeds via two different catalytic cycles: The photo-excited state of the [Ir(dF(CF3
PDF
Album
Review
Published 05 Jan 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation and chlorination. Part 2: Use of CF3SO2Cl

  • Hélène Chachignon,
  • Hélène Guyon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2800–2818, doi:10.3762/bjoc.13.273

Graphical Abstract
  • -cyanotrifluoromethylations [22] of alkenes under photoredox catalysis. These reactions proceeded through a formyl or a cyano group migration triggered by the addition of the trifluoromethyl radical onto the alkene moiety. Both methodologies were developed using Togni’s hypervalent iodine reagent as the CF3 source, but it
  • was found that they also proceeded smoothly with CF3SO2Cl (Scheme 15). Chlorotrifluoromethylation of alkenes: As clearly demonstrated in the works described above, CF3SO2Cl is a reliable CF3 source under photoredox catalysis. However, its use under similar conditions can also allow the simultaneous
  • enol ethers (see Scheme 1); except that radical 20 underwent a chlorine atom abstraction to furnish the chlorotrifluoromethylated product (Scheme 16). Several years later this transformation of alkenes was re-investigated under photoredox catalysis by Jung, Han and co-workers [25]. By replacing RuCl2
PDF
Album
Full Research Paper
Published 19 Dec 2017

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  • -trifluoromethylated ketones by reaction of CF3SO2Na under photoredox catalysis. The substrate scope was broad and the reaction proceeded with high functional group tolerance; indeed, aryl-, alkyl-, hetero-functionalised terminal as well as non-terminal vinyl azides 15 were compatible with the reaction conditions. In
PDF
Album
Full Research Paper
Published 19 Dec 2017

Synthesis of 1,3-cis-disubstituted sterically encumbered imidazolidinone organocatalysts

  • Jan Wallbaum and
  • Daniel B. Werz

Beilstein J. Org. Chem. 2017, 13, 2577–2583, doi:10.3762/bjoc.13.254

Graphical Abstract
  • –Crafts alkylation [23] and in combination with photoredox catalysis (Scheme 1a) [24]. The enantioselective α-alkylation was achieved by merging the common photoredox catalyst Ru(bpy)3Cl2 with imidazolidinone catalyst 3a·TfOH, controlling the stereochemistry of the radical addition via an intermediate
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2017

Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis

  • Flavio Fanelli,
  • Giovanna Parisi,
  • Leonardo Degennaro and
  • Renzo Luisi

Beilstein J. Org. Chem. 2017, 13, 520–542, doi:10.3762/bjoc.13.51

Graphical Abstract
  • residence time. Noël optimized, for the first time, a trifluoromethylation of aromatic heterocycles by continuous-flow photoredox catalysis. The process benefited from the use of microreactor technology and readily available photocatalysts. The process was also employable for perfluoroalkylation. The
  • . Trifluoromethylation by continuous-flow photoredox catalysis. Flow photochemical synthesis of 6(5H)-phenanthridiones from 2-chlorobenzamides. Synthesis of biaryls 14a–g under photochemical flow conditions. Flow oxidation of hydrazones to diazo compounds. Synthetic use of flow-generated diazo compounds. Ley’s flow
PDF
Album
Review
Published 14 Mar 2017

Green chemistry

  • Luigi Vaccaro

Beilstein J. Org. Chem. 2016, 12, 2763–2765, doi:10.3762/bjoc.12.273

Graphical Abstract
  • . Turner [10], and “Organic synthesis using photoredox catalysis” by Axel G. Griesbeck [11], proving that green chemistry and sustainability can be approached from many different perspectives. The breadth of chemical and technological innovations makes the definition of novel metrics for the evaluation of
PDF
Editorial
Published 15 Dec 2016

Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst

  • Pierre Querard,
  • Inna Perepichka,
  • Eli Zysman-Colman and
  • Chao-Jun Li

Beilstein J. Org. Chem. 2016, 12, 2636–2643, doi:10.3762/bjoc.12.260

Graphical Abstract
  • [2]. The emerging and expanding field of visible-light-mediated photoredox catalysis presents unique opportunities for the conception of new synthetic routes [3][4][5][6][7][8][9][10][11][12]. Upon exposure to visible light, photoredox catalysts can function as both reductant and oxidant, thereby
  • providing extremely important tools for potential transition-metal-catalyzed enantioselective reactions of sp3 C–H bonds, which could be carried out at low temperature and under mild reaction conditions [13][14]. We envisioned that combining photoredox catalysis with typical cross-coupling methods will
  • sp3 C–H bonds adjacent to nitrogen, combining photoredox catalysis with metal-catalyzed transformations. Results and Discussion Optimisation of reaction conditions In our previous work on arylation of N-aryltetrahydroisoquinoline [30], we demonstrated that lowering the temperature from 90 °C to room
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2016

Enantioconvergent catalysis

  • Justin T. Mohr,
  • Jared T. Moore and
  • Brian M. Stoltz

Beilstein J. Org. Chem. 2016, 12, 2038–2045, doi:10.3762/bjoc.12.192

Graphical Abstract
  • halide (e.g., (±)-16). Subsequently, the achiral radical combines with the chiral Cu catalyst and undergoes an enantioselective bond-formation step in conjunction with the carbazole nucleophile to form α-aminoamide 18. This report fuses both enantioconvergent and photoredox catalysis, two powerful and
PDF
Album
Review
Published 16 Sep 2016

Opportunities and challenges for direct C–H functionalization of piperazines

  • Zhishi Ye,
  • Kristen E. Gettys and
  • Mingji Dai

Beilstein J. Org. Chem. 2016, 12, 702–715, doi:10.3762/bjoc.12.70

Graphical Abstract
  • functionalizations, and photoredox catalysis are discussed. We also highlight the difficulties experienced when successful methods for α-C–H functionalization of acyclic amines and saturated mono-nitrogen heterocyclic compounds (such as piperidines and pyrrolidines) were applied to piperazine substrates. Keywords
  • : α-lithiation; C–H functionalization; heterocycle; photoredox catalysis; piperazine; Introduction Piperazine is one of the most important saturated N-heterocycles frequently found in life-saving small-molecule pharmaceuticals [1]. In a recent statistical study done by Njardarson and co-workers
  • starting materials. The reaction proceeds with excellent regio- and diastereoselectivity which is presumably due to a regio- and stereoselective alkene insertion into the strained metalla-aziridine intermediate 84. Photoredox catalysis Visible-light photoredox catalysis has emerged as a powerful platform
PDF
Album
Review
Published 13 Apr 2016
Other Beilstein-Institut Open Science Activities