Search results

Search for "protecting groups" in Full Text gives 311 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2668–2679, doi:10.3762/bjoc.17.181

Graphical Abstract
  • reaction to give the hydroxyfluorenone 10t (Scheme 6) was unsuccessful, suggesting that here TBHP chemoselectively reacts with the phenolic group to generate non-identifiable products. In order to provide an access to phenolic fluorenones as well, some commonly used phenol protecting groups were tested
  • . Both TBS and SEM protecting groups were tolerated, as demonstrated by the syntheses of the fluorenones 10u and 10v (52 and 46% yields). As expected, the O-benzyl group was not tolerated, giving only trace amounts of product 10w, as benzyl ethers are well known to undergo side reactions with free
  • Suzuki cross-coupling reactions, followed by reduction or reductive amination. The oxidative cyclization conditions are compatible with many functional groups on the aromatic rings (methoxy, chloro, cyano, nitro, and phenol protecting groups like TBS and SEM – but not benzyl and methylenedioxy
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • silyl ethers. Ooi et al. utilized an axially chiral organoaluminum Lewis acid catalyst (18) to convert a series of α,α-dialkyl-α-siloxyaldehydes 16 to α-siloxyketones 17 in high yields and >74% ee (Figure 5) [7]. This reaction is noteworthy for its tolerance of silyl protecting groups, which are
PDF
Album
Review
Published 15 Oct 2021

A novel methodology for the efficient synthesis of 3-monohalooxindoles by acidolysis of 3-phosphate-substituted oxindoles with haloid acids

  • Li Liu,
  • Yue Li,
  • Tiao Huang,
  • Dulin Kong and
  • Mingshu Wu

Beilstein J. Org. Chem. 2021, 17, 2321–2328, doi:10.3762/bjoc.17.150

Graphical Abstract
  • substrate with no residue R1 on the phenyl ring produced the corresponding product 4a in a higher yield than some the substituted substrates. In addition, N-protected (2-oxoindolin-3-yl) phosphate substrates could also deliver the products in good yield (see 4m–o), even though bulkier N-protecting groups
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2021

Progress and challenges in the synthesis of sequence controlled polysaccharides

  • Giulio Fittolani,
  • Theodore Tyrikos-Ergas,
  • Denisa Vargová,
  • Manishkumar A. Chaube and
  • Martina Delbianco

Beilstein J. Org. Chem. 2021, 17, 1981–2025, doi:10.3762/bjoc.17.129

Graphical Abstract
  • for the introduction of unnatural modifications. However, the control over the length and substitution pattern remains poor. To ensure good regio- and stereoselectivity, the starting material, often a polycyclic compound, has to be designed with suitable protecting groups (PGs). These structures can
  • importance of the deacetylated residues, with the free amino group able to stabilize new geometries. Many more N-protecting groups [217][261] are available and could generate COS with defined PA, however, to date most of them have shown significant drawbacks, decreasing the reactivity of the BB during
PDF
Album
Review
Published 05 Aug 2021

Chemical synthesis of C6-tetrazole ᴅ-mannose building blocks and access to a bioisostere of mannuronic acid 1-phosphate

  • Eleni Dimitriou and
  • Gavin J. Miller

Beilstein J. Org. Chem. 2021, 17, 1527–1532, doi:10.3762/bjoc.17.110

Graphical Abstract
  • appropriate chemoenzymatic syntheses [21][22][23]. Conclusion We have established synthetic access to a series of C6-tetrazole thioglycoside monosaccharide building blocks with capability for orthogonal C4- and tetrazole N-protecting groups. We demonstrate anomeric manipulation of these donors to new
PDF
Album
Supp Info
Letter
Published 05 Jul 2021

Total synthesis of ent-pavettamine

  • Memory Zimuwandeyi,
  • Manuel A. Fernandes,
  • Amanda L. Rousseau and
  • Moira L. Bode

Beilstein J. Org. Chem. 2021, 17, 1440–1446, doi:10.3762/bjoc.17.99

Graphical Abstract
  • group did not yield the desired product [22][23][24][25][26]. Several selective trityl deprotection attempts gave different results: either the reaction did not proceed at all yielding starting material, or both the trityl and benzyl group were removed or all three protecting groups were removed. Based
  • pavettamine, in order to obtain the enantiomer. The final deprotection step proved particularly efficient, with two protecting groups being removed simultaneously to unveil the desired target. Structure of pavettamine 1 and its enantiomer 2. Crystal structure of compound 9. Single crystal X-ray structure of
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
  • first hydrolyzed using NaOH followed by the reaction with TBDMSCl and benzoyl chloride to get the N6-benzoyl-3’,5’-O-diTBDMS-protected nucleoside 74. Removal of the silyl-protecting groups in the double-headed nucleoside 74 with TBAF in THF resulted in the formation of the desired doubled-headed
  • was reduced in the presence of NaBH4 followed by the treatment with MsCl in pyridine to get the nucleoside salt 129. Next, the pyridinium group was replaced by an N3-protected thymine in basic medium followed by removal of the protecting groups and the selective DMTr protection of the C-5′-hydroxy
  • simultaneous removal of tert-butyldimethylsilyl and amidine protecting groups, respectively (Scheme 41 and Scheme 42) [26]. The incorporation of the double-headed nucleosides 159 and 163 into oligonucleotides resulted in the formation of thermally stable DNA:RNA duplexes due to an efficient π–π stacking
PDF
Album
Review
Published 08 Jun 2021

Heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile: synthesis of diverse nitrogenous heterocyclic compounds

  • Guanglong Pan,
  • Qian Yang,
  • Wentao Wang,
  • Yurong Tang and
  • Yunfei Cai

Beilstein J. Org. Chem. 2021, 17, 1171–1180, doi:10.3762/bjoc.17.89

Graphical Abstract
  • , delivering the corresponding regioisomers 8l and 8l’ in 62% with 1:1.6 ratio. Moreover, the naphthalene and tetrahydroisoquinoline-derived acrylamides were also compatible, giving the polycyclic products 8m and 8n in 77% and 70%, respectively. Additionally, protecting groups such as isopropyl, benzyl, or
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2021

Metal-free glycosylation with glycosyl fluorides in liquid SO2

  • Krista Gulbe,
  • Jevgeņija Lugiņina,
  • Edijs Jansons,
  • Artis Kinens and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 964–976, doi:10.3762/bjoc.17.78

Graphical Abstract
  • We started our study by short screening of the glycosylation conditions in liquid SO2 (Table 1). To avoid a potential cleavage of acid-labile protecting groups and to obtain an easily analyzable reaction mixture, pivaloyl-protected mannosyl fluoride α-1a as a relatively stable disarmed glycosyl donor
  • fluoride α-1a to form bis-mannosides α-8 in good yields (Scheme 2). In a series of pivaloyl-protected mannosides 3 a substrate-controlled α-selectivity due to the favoring effect of both neighboring ester-type protecting groups and the anomeric effect was observed [3]. On the other hand, mixing of glycosyl
  • basic nitrogen or fluorophilic trimethylsilyl group in the molecule of the glycosyl acceptor (Figure S1, Supporting Information File 1). To our delight, no cleavage of the pivaloyl protecting groups in liquid SO2 medium was observed and the main side-product formed in the series of mannosides 3 was the
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2021

Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications

  • Christopher Liczner,
  • Kieran Duke,
  • Gabrielle Juneau,
  • Martin Egli and
  • Christopher J. Wilds

Beilstein J. Org. Chem. 2021, 17, 908–931, doi:10.3762/bjoc.17.76

Graphical Abstract
  • necessary protecting groups are present on the nucleobase and sugar moieties [76][77]. Unlike the phosphodiester linkage of natural DNA, the AM1 modification is an example of a non-ionic backbone. The crystal structure of a 13-mer RNA duplex with a single central AM1 modification revealed that this
  • ]. Starting with a prepared 5'-iodo-4'-fluorouridine analogue that had been used in previous attempts of this synthesis, they removed the acetyl protecting groups at C3' and C2' with NH3/MeOH to give 5'-iodo-4'-fluorouridine [211]. Selective protection of the 2'-OH with TBDMS-Cl followed by protection of the
PDF
Album
Review
Published 28 Apr 2021

Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides

  • Roslyn M. Ray,
  • Anders Højgaard Hansen,
  • Maria Taskova,
  • Bernhard Jandl,
  • Jonas Hansen,
  • Citra Soemardy,
  • Kevin V. Morris and
  • Kira Astakhova

Beilstein J. Org. Chem. 2021, 17, 891–907, doi:10.3762/bjoc.17.75

Graphical Abstract
  • removal of the side-chain protecting groups was achieved by using trifluoroacetic acid (TFA)/phenol/water/triisopropylsilane (TIPS) 88:5:5:2 (3 × 60 min). After cleavage, the remaining resin was extracted with DCM (2 × 10 min). All DCM extracts and TFA cleavages were combined, and the resulting mixture
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2021

Synthesis and properties of oligonucleotides modified with an N-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing adenine, guanine, or 5-methylcytosine nucleobases

  • Naohiro Horie,
  • Takao Yamaguchi,
  • Shinji Kumagai and
  • Satoshi Obika

Beilstein J. Org. Chem. 2021, 17, 622–629, doi:10.3762/bjoc.17.54

Graphical Abstract
  • immunologically unfavorable cytosine (C), is needed. The preparation of all four phosphoramidites (A, G, mC, and T) is generally not easy because each nucleobase differs in the sensitivity to reactions, and appropriate protecting groups need to be selected [8][21][22][23]. We recently achieved the synthesis of
PDF
Supp Info
Full Research Paper
Published 04 Mar 2021

Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols

  • Marek Kõllo,
  • Marje Kasari,
  • Villu Kasari,
  • Tõnis Pehk,
  • Ivar Järving,
  • Margus Lopp,
  • Arvi Jõers and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2021, 17, 581–588, doi:10.3762/bjoc.17.52

Graphical Abstract
  • 9α-hydroxylated diol. The following oxidative cleavage of the C–C bond with a mild oxidant leads to the steroid with an appropriately broken steroid skeleton. The method provides the target compound in only two steps, without any manipulations involving protecting groups. The present method features
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2021

1,2,3-Triazoles as leaving groups: SNAr reactions of 2,6-bistriazolylpurines with O- and C-nucleophiles

  • Dace Cīrule,
  • Irina Novosjolova,
  • Ērika Bizdēna and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 410–419, doi:10.3762/bjoc.17.37

Graphical Abstract
  • (5.0 equiv). The excess of base and alcohol was required due to the cleavage of acetyl protecting groups. Products 3g–i were obtained in yields of up to 79% (Scheme 4). Furthermore, purification of the products 3g–i was complicated due to their poor solubility in organic solvents. The C6
  • regioselectivity of SNAr reactions was proved by 13C NMR comparison of the products 3a–i with similar compounds from literature [61]. Intriguingly, we were able to conserve the acetate protecting groups in product 3j, when the SNAr reaction was performed in the presence of DBU used as base. The artificial
  • dinucleotide analogue 3j was obtained in 25% isolated yield. We have explored also reactions of 2,6-bistriazolylpurines 2a and 2c with water in buffered and basic medium, respectively (Scheme 5). The buffered conditions (NaOAc/DMSO/H2O) were sufficiently mild to maintain the acetyl protecting groups in product
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

19F NMR as a tool in chemical biology

  • Diana Gimenez,
  • Aoife Phelan,
  • Cormac D. Murphy and
  • Steven L. Cobb

Beilstein J. Org. Chem. 2021, 17, 293–318, doi:10.3762/bjoc.17.28

Graphical Abstract
  • aliphatic amino acid, (E)-2-amino-5-(pentafluorosulfanyl)pent-4-enoic acid (14, Figure 1), SF5NVa [21]. Most recently, Cobb et al. [22] reported the synthesis of several pentafluorosulfanyl phenylalanine derivatives with suitable protecting groups to allow incorporation into peptides through common solid
PDF
Album
Review
Published 28 Jan 2021

Total synthesis of decarboxyaltenusin

  • Lucas Warmuth,
  • Aaron Weiß,
  • Marco Reinhardt,
  • Anna Meschkov,
  • Ute Schepers and
  • Joachim Podlech

Beilstein J. Org. Chem. 2021, 17, 224–228, doi:10.3762/bjoc.17.22

Graphical Abstract
  • analysis, we envisioned a Suzuki coupling of two suitably substituted arenes. Silyl protecting groups like the tert-butyldimethylsilyl group (TBS) were considered appropriate for all projected reaction steps. The boronate moiety 6a was prepared starting with 4-methylcatechol (2), which was initially
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

All-carbon [3 + 2] cycloaddition in natural product synthesis

  • Zhuo Wang and
  • Junyang Liu

Beilstein J. Org. Chem. 2020, 16, 3015–3031, doi:10.3762/bjoc.16.251

Graphical Abstract
  • development of the all-carbon [3 + 2] cyclization with the reactive functional groups’ compatibilities and/or without the use of protecting groups [83][84] can improve the synthetic efficiency and make this class of reactions more attractive to the synthetic scientist for applications. Lastly, we anticipate
PDF
Album
Review
Published 09 Dec 2020

Changed reactivity of secondary hydroxy groups in C8-modified adenosine – lessons learned from silylation

  • Jennifer Frommer and
  • Sabine Müller

Beilstein J. Org. Chem. 2020, 16, 2854–2861, doi:10.3762/bjoc.16.234

Graphical Abstract
  • being preferentially formed. Optimization of the protection scheme lead to a new and economic route to the desired C8-alkynylated building block and its incorporation in RNA. Keywords: nucleoside chemistry; protecting groups; RNA synthesis; Sonogashira reaction; Introduction Oligoribonucleotides
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2020

Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides

  • Dongsik Yang,
  • Hongjian He and
  • Bing Xu

Beilstein J. Org. Chem. 2020, 16, 2709–2718, doi:10.3762/bjoc.16.221

Graphical Abstract
  • synthesis (SPPS) [47] to produce the peptides shown in Scheme 1. We first synthesized the peptide segments (i.e., Fmoc-DEDDDLLIG (1a) and acetyl-DEDDDLLIG (2a)). We kept the tert-butyl protecting groups of aspartic acid for the coupling reaction with Nap-ffky. We used 2,2,2-trifluoroethanol (TFE) in
  • , we used TFA at room temperature for 2 h to cleave the tert-butyl protecting groups of 1b and 2b. After adding diethyl ether to precipitate the crude peptides, centrifugation, and washing three times, we used reversed-phase HPLC and acetonitrile (containing 0.1% TFA) and double-distilled water
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2020

Optical detection of di- and triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)–dipicolylamine complexes

  • Lena Reinke,
  • Julia Bartl,
  • Marcus Koch and
  • Stefan Kubik

Beilstein J. Org. Chem. 2020, 16, 2687–2700, doi:10.3762/bjoc.16.219

Graphical Abstract
  • tendency to migrate and a generally higher stability with respect to thiol-containing AuNPs [37][38][39]. A further advantage is the straightforward ligand synthesis, which does not require the use of protecting groups as in the case of thiols. The ligand 1 served as the solubilizing component and was
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2020

Synthesis of 4-substituted azopyridine-functionalized Ni(II)-porphyrins as molecular spin switches

  • Jannis Ludwig,
  • Tobias Moje,
  • Fynn Röhricht and
  • Rainer Herges

Beilstein J. Org. Chem. 2020, 16, 2589–2597, doi:10.3762/bjoc.16.210

Graphical Abstract
  • -iodophenylazo)-4-chloropyridine (17) with LiSSiMe3 (8) [28], t-BuSH (13) and HSCH2CH2CO2CH3 (15) [29]. Electron-deficient aromatic, silylated thiols exhibit very labile Si–S bonds [30]. Thus, even bulky silyl protection groups are not suitable as protecting groups for the subsequent Suzuki reaction
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2020

The B & B approach: Ball-milling conjugation of dextran with phenylboronic acid (PBA)-functionalized BODIPY

  • Patrizia Andreozzi,
  • Lorenza Tamberi,
  • Elisamaria Tasca,
  • Gina Elena Giacomazzo,
  • Marta Martinez,
  • Mirko Severi,
  • Marco Marradi,
  • Stefano Cicchi,
  • Sergio Moya,
  • Giacomo Biagiotti and
  • Barbara Richichi

Beilstein J. Org. Chem. 2020, 16, 2272–2281, doi:10.3762/bjoc.16.188

Graphical Abstract
  • related esters are relevant synthetic building blocks widely employed as cross-coupling reagents [14] as well as protecting groups for polyols and diamines [15][16]. Moreover, the reversible covalent interaction of boronic acids with specifically oriented cis-1,2 and 1,3-diols has been successfully
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2020

Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis

  • Shahboz Yakubov and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2020, 16, 2151–2192, doi:10.3762/bjoc.16.183

Graphical Abstract
  • with Selectfluor® [153]. The authors justified the use of protecting groups due to their extensive use in peptide synthesis. Of all the PGs tested, phthalimide (Phth)- and trifluoroacetate (TFA)-protected substrates underwent photosensitized C–H fluorination to give the highest yield of 80% and 71% of
PDF
Album
Review
Published 03 Sep 2020

Syntheses of spliceostatins and thailanstatins: a review

  • William A. Donaldson

Beilstein J. Org. Chem. 2020, 16, 1991–2006, doi:10.3762/bjoc.16.166

Graphical Abstract
  • manipulation of the C-4 and C-6 protecting groups gave the secondary allylic alcohol 71, which underwent an epoxidation with mCPBA to give 72. A second sequence of C-4/C-6 protection, manipulation, and oxidation gave the aldehyde 73. The disadvantages of this route include the overall length (13 or 14 steps
  • ) gave the C-phenyl glucoside 75 [36]. Notably, the use of oxidants other than BQ gave either the TMS enol ether or the 2,3-dihydro-6-phenyl-4H-pyran-4-one. The C-3 exocyclic methylene group was introduced by a Wittig olefination, and after the manipulation of the protecting groups, a VO(acac)2-catalyzed
PDF
Album
Review
Published 13 Aug 2020

Synthesis, docking study and biological evaluation of ᴅ-fructofuranosyl and ᴅ-tagatofuranosyl sulfones as potential inhibitors of the mycobacterial galactan synthesis targeting the galactofuranosyltransferase GlfT2

  • Marek Baráth,
  • Jana Jakubčinová,
  • Zuzana Konyariková,
  • Stanislav Kozmon,
  • Katarína Mikušová and
  • Maroš Bella

Beilstein J. Org. Chem. 2020, 16, 1853–1862, doi:10.3762/bjoc.16.152

Graphical Abstract
  • -chloroperbenzoic acid (m-CPBA, 12 equiv) led to the simultaneous phosphorylation of the hydroxy group and to the oxidation of the sulfide to give 1-O-dibenzyloxyphosphoryl-ᴅ-fructofuranosyl sulfones 7α, 8α, 8β and 9α in excellent yields (Scheme 1). Final removal of benzyl protecting groups by catalytic
  • of the benzyl protecting groups in later stages of the synthesis. This advantage makes the overall synthesis of the target molecules one reaction step shorter in comparison with the synthesis starting from pivalate 11 (Scheme 3). With alcohols 17 in hand, the synthesis continued with their
  • obtained by acetonide hydrolysis under acidic conditions followed by the final catalytic hydrogenation of the benzyl protecting groups in derivatives 22. Evaluation of the effects of the target compounds on the synthesis of lipid-linked galactan precursors The availability of a series of compounds with
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2020
Other Beilstein-Institut Open Science Activities