Search results

Search for "radicals" in Full Text gives 335 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Nucleophilic functionalization of thianthrenium salts under basic conditions

  • Xinting Fan,
  • Duo Zhang,
  • Xiangchuan Xiu,
  • Bin Xu,
  • Yu Yuan,
  • Feng Chen and
  • Pan Gao

Beilstein J. Org. Chem. 2024, 20, 257–263, doi:10.3762/bjoc.20.26

Graphical Abstract
  • ][20]. On the other hand, sulfonium salts have emerged as appealing sources of aryl radicals for a wide range of transformations aimed at creating novel chemical bonds driven by their distinctive structural attributes and chemical tendencies (Scheme 1a) [9][21][22][23][24][25][26]. In addition to late
  • generation of alkyl radicals [39]. After that, a series of methods for the modification of alkylthianthrenium salts have been developed, including the transition-metal-catalyzed cross-coupling with terminal alkynes [40], sulfonylation with DABCO·(SO2)2 [41][42][43], or alkylation of active alkenes [44][45
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles

  • Chuan Yang,
  • Wei Shi,
  • Jian Tian,
  • Lin Guo,
  • Yating Zhao and
  • Wujiong Xia

Beilstein J. Org. Chem. 2024, 20, 118–124, doi:10.3762/bjoc.20.12

Graphical Abstract
  • radicals. This method allows the efficient synthesis of various indole derivatives without the need of photocatalysts or transition-metal catalysts. Mechanism experiments indicate that the process involves a radical chain process initiated by the homolysis of Umemoto's reagent. This straightforward method
  • to furnish trifluoromethylated dihyropyrido[1,2-a]indolones under mild conditions, without the need of photocatalysts or transition metals [28]. Results and Discussion We initialized our study by employing Ru(bpy)3Cl2·6H2O and Umemoto’s reagent to generate trifluoromethyl radicals via a photo
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2024

Photoinduced in situ generation of DNA-targeting ligands: DNA-binding and DNA-photodamaging properties of benzo[c]quinolizinium ions

  • Julika Schlosser,
  • Olga Fedorova,
  • Yuri Fedorov and
  • Heiko Ihmels

Beilstein J. Org. Chem. 2024, 20, 101–117, doi:10.3762/bjoc.20.11

Graphical Abstract
  • , even under anaerobic conditions. Investigations of the mechanism of the DNA damage revealed the involvement of intermediate hydroxyl radicals and C-centered radicals. Under aerobic conditions, singlet oxygen only contributes to marginal extent to the DNA damage. Keywords: DNA intercalators
  • species (ROS), such peroxyl, alkoxy and hydroxyl radicals, or carbon-centered radicals, which subsequently induce DNA strand cleavage. In the type-II mechanism, a triplet-excited photosensitizer reacts with molecular oxygen to give highly reactive singlet oxygen, 1O2, as reactive intermediate, which in
  • ). To clarify whether the mechanism of the DNA photodamage proceeds through the formation of radicals, experiments with commmonly employed radical scavengers were conducted (Table 3, Supporting Information File 1, Figure S17). In the presence of hydroxyl-radical scavengers DMSO, t-BuOH, and 2-propanol
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Long oligodeoxynucleotides: chemical synthesis, isolation via catching-by-polymerization, verification via sequencing, and gene expression demonstration

  • Yipeng Yin,
  • Reed Arneson,
  • Alexander Apostle,
  • Adikari M. D. N. Eriyagama,
  • Komal Chillar,
  • Emma Burke,
  • Martina Jahfetson,
  • Yinan Yuan and
  • Shiyue Fang

Beilstein J. Org. Chem. 2023, 19, 1957–1965, doi:10.3762/bjoc.19.146

Graphical Abstract
  • results further confirmed that ODN damage by radicals during CBP purification is unlikely. Another concern for long ODN synthesis is the perceived low quantity of product [29]. For example, for a 400 nt ODN synthesis, if the average stepwise yield is 99.0% as usually observed in trityl assay for the
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2023

Beyond n-dopants for organic semiconductors: use of bibenzo[d]imidazoles in UV-promoted dehalogenation reactions of organic halides

  • Kan Tang,
  • Megan R. Brown,
  • Chad Risko,
  • Melissa K. Gish,
  • Garry Rumbles,
  • Phuc H. Pham,
  • Oana R. Luca,
  • Stephen Barlow and
  • Seth R. Marder

Beilstein J. Org. Chem. 2023, 19, 1912–1922, doi:10.3762/bjoc.19.142

Graphical Abstract
  • of alkyl halides, RX, by CoCp2 (Cp = η5-cyclopentadienyl; E = −1.3 V vs FeCp2+/0), gives CoCp2+ and X−, but the organic radicals R• react with another molecule of CoCp2 to afford CoCp(η4-C5H5R) [7]. In some cases, issues of reductant air sensitivity can be circumvented by the use of photocatalysts in
  • [4][5], while other reducing species have been formed from in situ reactions of simple diols or diamines [13]. Another approach is to utilize dimers formed by highly reducing radicals, such the bibenzoimidazoles (Y-DMBI)2 (Figure 1c). (Me-DMBI)2 was first reported in 1984 and used as a reductant in
  • many radicals [28][29][30][31]. The reaction is substantially accelerated by UV excitation at 365 nm; quantitative conversion of benzyl bromide at low initial concentration (3 mM) can be achieved within 1 h using both (N-DMBI)2 or (Cyc-DMBI)2 and UV (Table 1, entries 3 and 6), while even at higher
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2023

Controlling the reactivity of La@C82 by reduction: reaction of the La@C82 anion with alkyl halide with high regioselectivity

  • Yutaka Maeda,
  • Saeka Akita,
  • Mitsuaki Suzuki,
  • Michio Yamada,
  • Takeshi Akasaka,
  • Kaoru Kobayashi and
  • Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858–1866, doi:10.3762/bjoc.19.138

Graphical Abstract
  • reaction is believed to occur via electron transfer, followed by the radical coupling of La@C2v-C82 and benzyl radicals, rather than by bimolecular nucleophilic substitution reaction of La@C2v-C82 anion with 1. Keywords: electron transfer; metallofullerene; radical; reduction; Introduction Fullerenes
  • more localized on the inside of the cluster for [Sc3N@Ih-C80]2−. A previous study reported that thermal treatment of La@C2v-C82 in the presence of 3-triphenylmethyl-5-oxazolidinone in toluene afforded four different benzylated La@C2v-C82 isomers [19]. Benzyl radicals may have been generated due to the
  • radicals [10][11], which react even at room temperature. However, the one-electron reduction of La@C2v-C82 is effective for the activating its reactivity toward alkyl halides in the thermal reaction. Recently, Zhou et al. reported that the reaction of Gd@C2v-C82 with benzyl bromide requires a three
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • radicals for alkenylation, was primarily facilitated by the electrostatic interaction between NaI and Katritzky salts 7. This innovative approach not only expanded the scope of photoredox cross-coupling reactions but also offered valuable insights into the role of NaI in facilitating these transformations
  • ), specifically by extracting a hydrogen atom from the α-position of benzyl radicals A. The process described above led to the formation of the corresponding olefins 11, eliminating the need for a carbon–iodine bond formation step. Alkylation Diaziridines are highly versatile building blocks in synthesis, with
  • route for the synthesis of unnatural amino acids and amines. Remarkably, the procedure exhibited excellent compatibility with a wide range of alkyl radicals, including primary, secondary, tertiary, and α-heterosubstituted radicals generated from corresponding redox-active esters 3. Concurrently, Shang
PDF
Album
Review
Published 22 Nov 2023

Benzoimidazolium-derived dimeric and hydride n-dopants for organic electron-transport materials: impact of substitution on structures, electrochemistry, and reactivity

  • Swagat K. Mohapatra,
  • Khaled Al Kurdi,
  • Samik Jhulki,
  • Georgii Bogdanov,
  • John Bacsa,
  • Maxwell Conte,
  • Tatiana V. Timofeeva,
  • Seth R. Marder and
  • Stephen Barlow

Beilstein J. Org. Chem. 2023, 19, 1651–1663, doi:10.3762/bjoc.19.121

Graphical Abstract
  • . Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts. E(1+/1•) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the
  • cations, while 4,7-dimethoxy substitution leads to more reducing E(1+/1•) values, as well as cathodic shifts in E(12•+/12) and E(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the 1H species with PC61BM. Because 2-aryl groups stabilize radicals, 1b2 and
  • [14][22][46], the bond length depends on orbital overlap and steric strain in the dimer, whereas dissociation energetics also depend on the stability of the monomeric odd-electron species, which vary considerably; in the case of 1• radicals an important factor is the ability of the Y substituent to
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2023

Tying a knot between crown ethers and porphyrins

  • Maksym Matviyishyn and
  • Bartosz Szyszko

Beilstein J. Org. Chem. 2023, 19, 1630–1650, doi:10.3762/bjoc.19.120

Graphical Abstract
  • single crystal XRD. Compound 43 formed stable cation radicals upon adding different oxidising agents, such as AgSbF6, TFA, and CuCl2. The cation radicals showed relative stability and remained undeteriorated on air for over a week. The crowned porphyrinoids incorporating two pyrroloindole units 44 were
  • also synthesised (Scheme 11) [134]. The electrochemical studies demonstrated low oxidation potentials, and similarly to previously described systems incorporating a single pyrroloindole unit, compound 44 underwent single-electron oxidation forming stable cation radicals. Ravikanth and co-workers have
PDF
Album
Perspective
Published 27 Oct 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • used in post-polymerization modification, including chemical crosslinking of polymers and polymer surface modification. Radicals are powerful tools for post-polymerization processes because of their exceptional reactivity. In contrast to the previous sections, we set the topic of section 4 on the
  • based on the radical polymerization of catechol derivatives. Catechols are known as easily oxidizable compounds and are prone to undergo oxidation by losing one or two electrons [3]. This way, either semiquinone radicals or o-quinones are formed by single or double-electron oxidation, respectively [4
  • ]. The semiquinone radicals formed during the oxidation of catechol can undergo a cross-coupling reaction to form polymers (Scheme 1). One example is the radical polymerization of urushiol. The earliest recorded application of natural radical polymerization can be traced back to the manufacture of
PDF
Album
Review
Published 18 Oct 2023

Synthesis of 5-arylidenerhodanines in L-proline-based deep eutectic solvent

  • Stéphanie Hesse

Beilstein J. Org. Chem. 2023, 19, 1537–1544, doi:10.3762/bjoc.19.110

Graphical Abstract
  • recycled for several runs [20]. As some benzylidenerhodanine derivatives were already reported for their antioxidant activities [3], we investigated those compounds for their antioxidant activity expressed as percentage of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity. DPPH free radicals
  • solution of the corresponding synthesized compound (1.5 mL, 0.2 mM) was added to a DMSO solution of DPPH radicals (1.5 mL, 0.2 mM), so that the final concentration of DPPH radical and the synthesized compound in a solution was 0.1 mM. The mixture was shaken and allowed to stand at room temperature. After
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • Scheme 31. Initially, homolytic cleavage of thiosulfonate 70 generated PhS· and PhSO2· radicals. The reduction of Ni(II) to Ni(0) in the presence of Cs2CO3 and the reaction with 68 formed alkynyl-Ni species I. Then, the PhS· radical reacted with I to generate alkenyl radical II, which can react with the
PDF
Album
Review
Published 27 Sep 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • alkylidenemalonates [9][10][11]. These reactions follow a free-radical chain process wherein alkyl radicals (R•) add across the C–C double bond of the 1,4-acceptor, activated by complexation with the dialkylzinc, to deliver an enoxyl radical that undergoes homolytic substitution at zinc (SH2) to produce a zinc
  • radicals (Scheme 1, R1 = H) undergo readily homolytic substitution. By contrast, tertiary α-carbonyl radicals (Scheme 1, R1 ≠ H) are less prone, making additions to α-substituted 1,4-acceptors more challenging. Typically, ethyl methacrylate does not react with dialkylzinc reagents [12]. Notwithstanding
  • , 1,4-additions of dialkylzinc reagents have been reported with dehydroamino ester derivatives [13][14] and α-bromoacrylates [15], which both involve an SH2 at zinc of tertiary α-alkoxycarbonyl radicals (Scheme 2, top). Here, the key to unlock the reactivity is the presence of a Lewis-basic substituent
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • . Route b: the α-C(sp3)–H bonds are activated by a combination of transition metals and radical initiators to give the alkyl radicals, which are coupled with other radical receptors to afford the target product. Cu-catalyzed reactions Copper (common oxidation states are +I, +II and +III) has a
  • oxidative alkylation of cyclic benzyl ethers with malonates or ketones. Oxygen is used as a terminal oxidant at atmospheric pressure. The key intermediate of this oxidative coupling reaction is benzyl alcohol intermediate C (Scheme 4) [52]. The generation of N–O radicals from NHPI in the presence of oxygen
  • extract a hydrogen from the ether C (sp3)–H bond to form radicals. Subsequently, a single electron transfer (SET) leads to the oxonium species. Then, the enamine generated in situ from methyl aryl ketone and pyrrolidine undergoes a nucleophilic reaction with the oxonium species followed by hydrolysis to
PDF
Album
Review
Published 06 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • David T. Nemoto Jr Kang-Jie Bian Shih-Chieh Kao Julian G. West Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX 77005, USA 10.3762/bjoc.19.90 Abstract The place of alkyl radicals in organic chemistry has changed markedly over the last several decades, evolving from
  • engagement of alkyl radicals remains challenging. Among these functionalization approaches, a bio-inspired mechanistic paradigm known as radical ligand transfer (RLT) has emerged as a particularly promising and versatile means of forming new bonds catalytically to alkyl radicals. This development has been
  • ; photocatalysis; radicals; Introduction The behavior of alkyl radicals has been studied rigorously for decades, though only recently have these come to be widely viewed as selective and useful synthetic intermediates [1][2][3][4]. This sea change has been driven by innovations in both the generation and
PDF
Album
Perspective
Published 15 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • radicals that often provide access to new dimensions of synthetic chemical space, the field of single electron transfer (SET) in organic synthesis has expanded considerably in the past two decades. Among this area, photoredox catalysis (PRC) is highly attractive due to its abilities i) to generate reactive
  • 2.1.1 C(sp2)–X activation: In the rise of visible light-mediated PRC, the generation of aryl radicals for C(sp2)–C(sp2/3) couplings under mild conditions (room temperature, visible light activation of a catalyst) was heavily investigated [34][35][36]. However, initially the procedures were generally
  • formation which corroborates the involvement of free radicals. The authors argued against radical chain propagation on the basis of lack of reactivity in the dark during the light ON-OFF cycle experiments (we note that this does not rule out chain propagation with an efficient chain death). Investigations
PDF
Album
Review
Published 28 Jul 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • photocatalyst. Keywords: decarboxylative cyclization; DMAT; ergot alkaloids; photoredox catalysis; radicals; Introduction Visible-light photoredox catalysis is rapidly changing the way organic chemists approach the design and synthesis of molecules by offering new synthetic disconnection opportunities that
  • their ability to participate in either redox step of the catalytic cycle [42][43][44][45]. For example, the main use of α-amino acids in syntheses via photoredox catalysis is as readily available precursors of regioselective α-amino radicals by decarboxylative transformations, by oxidation of the
  • intramolecular decarboxylative cyclization with the formation of the 3,4-fused indole carbocycle rings (Figure 1b,c). In detail, the photocatalytic strategy for accessing the two C(sp3) radicals of DMAT derivatives envision the formation of a relatively stabilized allylic-benzylic carbon-centered radical by
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO2F2)

  • Xian-Lin Chen and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2023, 19, 901–908, doi:10.3762/bjoc.19.68

Graphical Abstract
  • esters and adopted the pre-acylation activation strategies [39][40][41]. Up to now, only one report employed an oxime for the generation of iminyl radicals to obtain the similar products, in which, substrates were limited to the electron-rich alkenes (Scheme 2b) [42]. On the other hand, sulfuryl fluoride
PDF
Album
Supp Info
Letter
Published 22 Jun 2023

Photocatalytic sequential C–H functionalization expediting acetoxymalonylation of imidazo heterocycles

  • Deepak Singh,
  • Shyamal Pramanik and
  • Soumitra Maity

Beilstein J. Org. Chem. 2023, 19, 666–673, doi:10.3762/bjoc.19.48

Graphical Abstract
  • boron complex (B2pin2), and using an expensive metal-based photocatalyst [fac-Ir(ppy)3] under inert atmosphere. We have recently demonstrated that aerial oxygen could be captured by alkyl radicals to install a keto-functionality onto alkenes in an organophotocatalytic way [23]. We aimed to extend this
  • under optimized reaction conditions, the acetylated product 4a was produced with excellent conversion (>90%). These results suggest the involvement of compound 5 as an intermediate, and Zn(OAc)2 or AcOH may be effective acetylating agents via generation of acetyl radicals. Control experiments under
PDF
Album
Supp Info
Letter
Published 12 May 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • to photochemically generate electrophilic radicals that can drive the functionalization of suitable electron-rich substrates [23]. Exploiting this strategy, here we report a novel metal-free methodology for the direct homolytic aromatic substitution (HAS) reaction of indoles 1 with α-iodosulfones 2
  • halogen-bonded EDA complex (Ia) between the sulfone 2a and DABCO (Figure 4). When irradiated, this photoactive aggregate led to the formation of reactive alkyl radicals (IIa), which may react with indole 1a eventually yielding the product 3a through a classical HAS pathway [31][32][33]. Then, we
  • -iodosulfones and DABCO, that are able to produce reactive C-centered radicals under mild reaction conditions. (a) Exploitation of an EDA complex in organic synthesis. (b) This work: use of halogen-bonded complexes to photochemically initiate the C–H alkylation of indoles 1 with iodosulfones 2. Optical
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  •  7) instead of the more commonly, and expensive, metal-based photocatalysts. While broadly successful, tertiary radicals failed to deliver any desired product. Of note, the reaction was amenable to a broad scope of derivatized heterobicyclic alkenes with mono- and disubstituted bridgeheads having
  • and Renaud expanded the scope of the photoredox/Ni dual-catalyzed coupling of alkyl nucleophiles 36 with heterobicyclic alkenes 30 to include α-amino radicals (Scheme 7) [40]. The authors noted the electron-rich oxabenzonorbornadiene derivatives provided the corresponding ring-opened adducts in good
PDF
Album
Review
Published 24 Apr 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • pleuromutilin tricyclic scaffold construction. Alternative reagents were thus explored to close the eight-membered ring via initial radical genesis. For instance, Bacqué et al. reported the insertion in the cyclization precursors of functional groups prone to form radicals (Scheme 35). In their investigations
PDF
Album
Review
Published 03 Mar 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • /cyclization cascades from acrylamides for the synthesis of oxindoles [39][40][41]. The radicals are typically generated from alkyl halides [42][43][44], carboxylic acids [45][46][47], simple alkanes [48], alkylboronic acids [49], isocyanides [50], or other [51][52][53]. In this context, the group of Fu
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • chemoselective manner [3]. The development of persistent radicals [4] as synthons in chemical synthesis, coupled with the advancements in generating and manipulating transient radicals [5] as cross-coupling partners in an array of chemical reactions, gives access to a wide variety of “new” retrosynthetic
  • approach, excluding electrochemical methods for generating radicals. An exhaustive review on radical total synthesis or divergent total synthesis lies beyond the scope of this review, and the readers are advised to refer to excellent reviews on these topics [6][10][14]. This review covers the years 2018
  • intermediates closely related to the biosynthetic origins of the family. On the other hand, radical retrosynthetic disconnections on common scaffolds are much less predictable and rarely similar due to the plethora of radical chemical transformations available nowadays. Although radicals stopped being
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone
  • /peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here. Keywords: CH-functionalization; free radicals; hypervalent iodine; N-oxyl radicals; redox-active molecules; Introduction Organocatalysis can be defined as catalysis by small organic molecules
  • classified according to the catalytically active species or key intermediates: N-oxyl radicals, oxoammonium cations, amine cation radicals, thiyl radicals, quinones, dioxiranes and oxaziridines, hypervalent iodine compounds, etc. However, some examples of organocatalyzed oxidative processes, in which an
PDF
Album
Perspective
Published 09 Dec 2022
Other Beilstein-Institut Open Science Activities