Search for "benzofuran" in Full Text gives 81 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2011, 7, 897–936, doi:10.3762/bjoc.7.103
Graphical Abstract
Scheme 1: Gold-catalyzed addition of alcohols.
Scheme 2: Gold-catalyzed cycloaddition of alcohols.
Scheme 3: Ionic liquids as the solvent in gold-catalyzed cycloaddition.
Scheme 4: Gold-catalyzed cycloaddition of diynes.
Scheme 5: Gold(I) chloride catalyzed cycloisomerization of 2-alkynyl-1,5-diols.
Scheme 6: Gold-catalyzed cycloaddition of glycols and dihydroxy compounds.
Scheme 7: Gold-catalyzed ring-opening of cyclopropenes.
Scheme 8: Gold-catalyzed intermolecular hydroalkoxylation of alkynes. PR3 = 41–45.
Scheme 9: Gold-catalyzed intramolecular 6-endo-dig cyclization of β-hydroxy-α,α-difluoroynones.
Scheme 10: Gold-catalyzed intermolecular hydroalkoxylation of non-activated olefins.
Scheme 11: Preparation of unsymmetrical ethers from alcohols.
Scheme 12: Expedient synthesis of dihydrofuran-3-ones.
Scheme 13: Catalytic approach to functionalized divinyl ketones.
Scheme 14: Gold-catalyzed glycosylation.
Scheme 15: Gold-catalyzed cycloaddition of aldehydes and ketones.
Scheme 16: Gold-catalyzed annulations of 2-(ynol)aryl aldehydes and o-alkynyl benzaldehydes.
Scheme 17: Gold-catalyzed addition of carboxylates.
Scheme 18: Dual-catalyzed rearrangement reaction of allenoates.
Scheme 19: Meyer–Schuster rearrangement of propargylic alcohols.
Scheme 20: Propargylic alcohol rearrangements.
Scheme 21: Gold-catalyzed synthesis of imines and amine alkylation.
Scheme 22: Hydroamination of allenes and allenamides.
Scheme 23: Gold-catalyzed inter- and intramolecular amination of alkynes and alkenes.
Scheme 24: Gold-catalyzed cycloisomerization of O-propioloyl oximes and β-allenylhydrazones.
Scheme 25: Intra- and intermolecular amination with ureas.
Scheme 26: Gold-catalyzed cyclization of ortho-alkynyl-N-sulfonylanilines and but-3-yn-1-amines.
Scheme 27: Gold-catalyzed piperidine ring synthesis.
Scheme 28: Ring expansion of alkylnyl cyclopropanes.
Scheme 29: Gold-catalyzed annulations of N-propargyl-β-enaminones and azomethine imines.
Scheme 30: Gold(I)-catalyzed cycloisomerization of aziridines.
Scheme 31: AuCl3/AgSbF6-catalyzed intramolecular amination of 2-(tosylamino)phenylprop-1-en-3-ols.
Scheme 32: Gold-catalyzed cyclization via a 7-endo-dig pathway.
Scheme 33: Gold-catalyzed synthesis of fused xanthines.
Scheme 34: Gold-catalyzed synthesis of amides and isoquinolines.
Scheme 35: Gold-catalyzed oxidative cross-coupling reactions of propargylic acetates.
Scheme 36: Gold-catalyzed nucleophilic addition to allenamides.
Scheme 37: Gold-catalyzed direct carbon–carbon bond coupling reactions.
Scheme 38: Gold-catalyzed C−H functionalization of indole/pyrrole heterocycles and non-activated arenes.
Scheme 39: Gold-catalyzed cycloisomerization of cyclic compounds.
Scheme 40: Gold-catalyzed cycloaddition of 1-aryl-1-allen-6-enes and propargyl acetates.
Scheme 41: Gold(I)-catalyzed cycloaddition with ligand-controlled regiochemistry.
Scheme 42: Gold(I)-catalyzed cycloaddition of dienes and enynes.
Scheme 43: Gold-catalyzed intramolecular cycloaddition of 3-alkoxy-1,5-enynes and 2,2-dipropargylmalonates.
Scheme 44: Gold-catalyzed intramolecular cycloaddition of 1,5-allenynes.
Scheme 45: Gold(I)-catalyzed cycloaddition of indoles.
Scheme 46: Gold-catalyzed annulation reactions.
Scheme 47: Gold–carbenoid induced cleavage of a sp3-hybridized C−H bond.
Scheme 48: Furan- and indole-based cascade reactions.
Scheme 49: Tandem process using aromatic alkynes.
Scheme 50: Gold-catalyzed cycloaddition of 1,3-dien-5-ynes.
Scheme 51: Gold-catalyzed cascade cyclization of diynes, propargylic esters, and 1,3-enynyl ketones.
Scheme 52: Tandem reaction of β-phenoxyimino ketones and alkynyl oxime ethers.
Scheme 53: Gold-catalyzed tandem cyclization of enynes, 2-(tosylamino)phenylprop-1-yn-3-ols, and allenoates.
Scheme 54: Cyclization of 2,4-dien-6-yne carboxylic acids.
Scheme 55: Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.
Scheme 56: Gold-catalyzed tandem reactions of alkynes.
Scheme 57: Aminoarylation and oxyarylation of alkenes.
Scheme 58: Cycloaddition of 2-ethynylnitrobenzene with various alkenes.
Scheme 59: Gold-catalyzed tandem reactions of allenoates and alkynes.
Scheme 60: Gold-catalyzed asymmetric synthesis of 2,3-dihydropyrroles.
Scheme 61: Chiral [NHC–Au(I)]-catalyzed cyclization of enyne.
Scheme 62: Gold-catalyzed hydroaminations and hydroalkoxylations.
Scheme 63: Gold(I)-catalyzed asymmetric hydroalkoxylation of 1,3-dihydroxymethyl-2-alkynylbenzene chromium com...
Scheme 64: Gold-catalyzed synthesis of julolidine derivatives.
Scheme 65: Gold-catalyzed the synthesis of chiral fused heterocycles.
Scheme 66: Gold-catalyzed asymmetric reactions with 3,5-(t-Bu)2-4-MeO-MeOBIPHEP.
Scheme 67: Gold-catalyzed cyclization of o-(alkynyl) styrenes.
Scheme 68: Asymmetric gold(I)-catalyzed redox-neutral domino reactions of enynes.
Scheme 69: Gold(I)-catalyzed enantioselective polyene cyclization reaction.
Scheme 70: Gold(I)-catalyzed enantioselective synthesis of benzopyrans.
Scheme 71: Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols.
Beilstein J. Org. Chem. 2011, 7, 442–495, doi:10.3762/bjoc.7.57
Graphical Abstract
Figure 1: Structures of atorvastatin and other commercial statins.
Figure 2: Structure of compactin.
Scheme 1: Synthesis of pentasubstituted pyrroles.
Scheme 2: [3 + 2] Cycloaddition to prepare 5-isopropylpyrroles.
Scheme 3: Regiospecific [3 + 2] cycloaddition to prepare the pyrrole scaffold.
Scheme 4: Formation of the pyrrole core of atorvastatin via [3 + 2] cycloaddition.
Scheme 5: Formation of pyrrole 33 via the Paal–Knorr reaction.
Scheme 6: Convergent synthesis towards atorvastatin.
Figure 3: Binding pocket of sunitinib in the TRK KIT.
Scheme 7: Synthesis of sunitinib.
Scheme 8: Alternative synthesis of sunitinib.
Scheme 9: Key steps in the syntheses of sumatriptan and zolmitriptan.
Scheme 10: Introduction of the N,N-dimethylaminoethyl side chain.
Scheme 11: Japp–Klingemann reaction in the synthesis of sumatriptan.
Scheme 12: Synthesis of the intermediate sulfonyl chlorides 62 and 63.
Scheme 13: Alternative introduction of the sulfonamide.
Scheme 14: Negishi-type coupling to benzylic sulfonamides.
Scheme 15: Heck reaction used to introduce the sulfonamide side chain of naratriptan.
Scheme 16: Synthesis of the oxazolinone appendage of zolmitriptan.
Scheme 17: Grandberg indole synthesis used in the preparation of rizatriptan.
Scheme 18: Improved synthesis of rizatriptan.
Scheme 19: Larock-type synthesis of rizatriptan.
Scheme 20: Synthesis of eletriptan.
Scheme 21: Heck coupling for the indole system in eletriptan.
Scheme 22: Attempted Fischer indole synthesis of elatriptan.
Scheme 23: Successful Fischer indole synthesis for eletriptan.
Scheme 24: Mechanistic rationale for the Bischler–Möhlau reaction.
Scheme 25: Bischler-type indole synthesis used in the fluvastatin sodium synthesis.
Scheme 26: Palladium-mediated synthesis of ondansetron.
Scheme 27: Fischer indole synthesis of ondansetron.
Scheme 28: Optimised Pictet–Spengler reaction towards tadalafil.
Figure 4: Structures of carvedilol 136 and propranolol 137.
Scheme 29: Synthesis of the carbazole core of carvedilol.
Scheme 30: Alternative syntheses of 4-hydroxy-9H-carbazole.
Scheme 31: Convergent synthesis of etodolac.
Scheme 32: Alternative synthesis of etodolac.
Figure 5: Structures of imidazole-containing drugs.
Scheme 33: Synthesis of functionalised imidazoles towards losartan.
Scheme 34: Direct synthesis of the chlorinated imidazole in losartan.
Scheme 35: Synthesis of trisubstituted imidazoles.
Scheme 36: Preparation of the imidazole ring in olmesartan.
Scheme 37: Synthesis of ondansetron.
Scheme 38: Alternative route to ondansetron and its analogues.
Scheme 39: Proton pump inhibitors and synthesis of esomeprazole.
Scheme 40: Synthesis of benzimidazole core pantoprazole.
Figure 6: Structure of rabeprazole 194.
Scheme 41: Synthesis of candesartan.
Scheme 42: Alternative access to the candesartan key intermediate 216.
Scheme 43: .Medicinal chemistry route to telmisartan.
Scheme 44: Improved synthesis of telmisartan.
Scheme 45: Synthesis of zolpidem.
Scheme 46: Copper-catalysed 3-component coupling towards zolpidem.
Figure 7: Structure of celecoxib.
Scheme 47: Preparation of celecoxib.
Scheme 48: Alternative synthesis of celecoxib.
Scheme 49: Regioselective access to celecoxib.
Scheme 50: Synthesis of pazopanib.
Scheme 51: Syntheses of anastrozole, rizatriptan and letrozole.
Scheme 52: Regioselective synthesis of anastrozole.
Scheme 53: Triazine-mediated triazole formation towards anastrozole.
Scheme 54: Alternative routes to 1,2,4-triazoles.
Scheme 55: Initial synthetic route to sitagliptin.
Figure 8: Binding of sitagliptin within DPP-IV.
Scheme 56: The process route to sitagliptin key intermediate 280.
Scheme 57: Synthesis of maraviroc.
Scheme 58: Synthesis of alprazolam.
Scheme 59: The use of N-nitrosoamidine derivatives in the preparation of fused benzodiazepines.
Figure 9: Structures of itraconazole, ravuconazole and voriconazole.
Scheme 60: Synthesis of itraconazole.
Scheme 61: Synthesis of rufinamide.
Scheme 62: Representative tetrazole formation in valsartan.
Figure 10: Structure of tetrazole containing olmesartan, candesartan and irbesartan.
Scheme 63: Early stage introduction of the tetrazole in losartan.
Scheme 64: Synthesis of cilostazol.
Figure 11: Structure of cefdinir.
Scheme 65: Semi-synthesis of cefdinir.
Scheme 66: Thiazole syntheses towards ritonavir.
Scheme 67: Synthesis towards pramipexole.
Scheme 68: Alternative route to pramipexole.
Scheme 69: Synthesis of famotidine.
Scheme 70: Efficient synthesis of the hyperuricemic febuxostat.
Scheme 71: Synthesis of ziprasidone.
Figure 12: Structure of mometasone.
Scheme 72: Industrial access to 2-furoic acid present in mometasone.
Scheme 73: Synthesis of ranitidine from furfuryl alcohol.
Scheme 74: Synthesis of nitrofurantoin.
Scheme 75: Synthesis of benzofuran.
Scheme 76: Synthesis of amiodarone.
Scheme 77: Synthesis of raloxifene.
Scheme 78: Alternative access to the benzo[b]thiophene core of raloxifene.
Scheme 79: Gewald reaction in the synthesis of olanzapine.
Scheme 80: Alternative synthesis of olanzapine.
Figure 13: Access to simple thiophene-containing drugs.
Scheme 81: Synthesis of clopidogrel.
Scheme 82: Pictet–Spengler reaction in the preparation of tetrahydrothieno[3,2-c]pyridine (422).
Scheme 83: Alternative synthesis of key intermediate 422.
Figure 14: Co-crystal structures of timolol (left) and carazolol (right) in the β-adrenergic receptor.
Scheme 84: Synthesis of timolol.
Scheme 85: Synthesis of tizanidine 440.
Scheme 86: Synthesis of leflunomide.
Scheme 87: Synthesis of sulfamethoxazole.
Scheme 88: Synthesis of risperidone.
Figure 15: Relative abundance of selected transformations.
Figure 16: The abundance of heterocycles within top 200 drugs (5-membered rings).
Beilstein J. Org. Chem. 2011, 7, 210–217, doi:10.3762/bjoc.7.28
Graphical Abstract
Figure 1: Structures of compounds 1, 2 and 3.
Scheme 1: Synthesis of ethyl 2-chloromethyl-6,7-methylenedioxyquinoline-3-carboxylate (5).
Scheme 2: One-pot synthesis of the targeted compounds 3a–g.
Scheme 3: Possible mechanistic pathway of formation of 2-(benzofuran-2-yl)-6,7-methylenedioxyquinoline-3-carb...
Beilstein J. Org. Chem. 2010, 6, 1061–1069, doi:10.3762/bjoc.6.121
Graphical Abstract
Scheme 1: Unimolecular reactivity of hydroxycarbenes under cryogenic conditions: [1,2]H-Tunneling of 1 and 3 (...
Scheme 2: A selection of heterocarbenes that undergo intramolecular C–H insertions.
Scheme 3: Attempted generation of 5 and d-5 as well as their corresponding insertion products.
Scheme 4: Proposed mechanism for the generation of 8 and 9. The [1,2]H-tunneling process apparently cannot co...
Figure 1: Unmodified matrix IR spectrum (Ar, 11 K) of the pyrolysis (600 °C) of 5. Traces of 9 are indicated ...
Figure 2: Unmodified matrix IR spectrum (Ar, 11 K) of the pyrolysis (600 °C) of d-5. Traces of 9 are indicate...
Scheme 5: Decay of the 2,3-dihydrobenzofuran-3-ol molecular radical cation (8+•).
Scheme 6: Attempted generation of 12 and the actual pyrolysis product 11.
Scheme 7: Unanticipated reaction of 6 upon heating in xylenes.
Scheme 8: Potential energy hypersurface of (o-methoxyphenyl)hydroxycarbene (5) (not drawn to scale; ZPVE incl...
Scheme 9: Acid-catalyzed generation of 7 by unreacted 6.
Beilstein J. Org. Chem. 2009, 5, No. 25, doi:10.3762/bjoc.5.25
Graphical Abstract
Scheme 1: Photochromism of 2H-chromenes.
Scheme 2: Synthesis of functionalized pyrans from 2-bromo-3H-naphtho[2,1-b]pyrans and 3-bromo-2H-1-benzopyran...
Scheme 3: Synthesis of the 2-bromo-3H-naphtho[2,1-b]pyran 1 and the 3-bromo-2H-1-benzopyrans 2a/b.
Scheme 4: Ring contraction observed during the cyanation approach towards the synthesis of 3.
Scheme 5: Palladium-catalyzed Sonogashira-coupling of 2-bromo-3H-naphtho[2,1-b]pyran 1.
Scheme 6: Palladium-catalyzed cyanation and carbonylation of 3-bromo-2H-1-benzopyrans 2a/b.
Figure 1: Data from time-resolved measurements of compound 5a. a) and b): Results from fs-pump-probe-spectros...
Beilstein J. Org. Chem. 2007, 3, No. 12, doi:10.1186/1860-5397-3-12
Graphical Abstract
Scheme 1: Synthesis of triazolopyridine 8.
Scheme 2: Synthesis of 1,2,3-triazoles and 1,2,3-triazolo[4,5-b]pyridines.
Scheme 3: Identification of 1,2,3-triazole 14.