Search results

Search for "enantioselective" in Full Text gives 490 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • enantioselective organocatalytic aza-Nazarov cyclization affording six-membered heterocycles after a ring expansion of the cyclization products [22]. Rasapalli and co-workers recently developed an efficient aza-Nazarov cyclization of quinazolinonyl enones promoted by TfOH or MsOH (methanesulfonic acid) for the
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • -pyrone by desymmetrization of α,α’-dimethoxy-γ-pyrone 2 through the addition of hindered nucleophiles to construct the vicinal quaternary carbon. In a subsequent and potentially enantioselective desymmetrization step, compound 5 would be converted into trichiachiapyrone B by 1,4-addition of the side
  • chain to the 2,5-cyclohexadienone scaffold. Avoiding heat and light sensitive tetraenes, the convergent plan would also give the opportunity to assess an enantioselective synthesis of the targets, noting that the C14 epimeric product, isotridachiapyrone B, has also been isolated by Schmitz. Results and
  • motif. Drawing from this work, future studies will be focused on an enantioselective access to the target. Routes to crispatene, photodeoxytridachione, aureothin, and tridachiapyrone B. Desymmetrization of 2. Addition of lithiocyclopentadiene to pyrone 2. Plan to reach 2,5-cyclohexadienone 5
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • . Moreover, the same group reported a related approach for the synthesis of various diterpenoids including rhodomollanol, an abeo-grayanane natural product [32][33]. Luo’s synthesis of grayanotoxin III, principinol E and rhodomollein XX In 2022, Luo et al. described an efficient and enantioselective
  • to be tackled. A highly enantioselective synthesis is still desirable, as the only synthesis offering >90% ee relies on the combination of chiral ligands and chiral auxiliary. Moreover, to date only 6 natural products from the grayanane family were synthesized, out of the more than 160 compounds
  • known to date. Thus, we anticipate that in the future, organic chemists will keep focusing on highly enantioselective, efficient and flexible synthetic strategies towards grayanane natural products. General structure of grayanane natural products. Grayanane biosynthesis. Matsumoto’s relay approach
PDF
Album
Review
Published 12 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • involving enantioselective organocatalysis were also reviewed [28]. Taking into account the good coverage of organophotoredox-catalysis in these reviews we decided to focus on another, less systematized subclass of processes catalyzed by redox-active molecules in the ground state (Scheme 1, type III). There
  • are a number of reviews on specific groups of redox-organocatalyzed oxidative transformations [43][44][45][46][47][48][49][50][51][52][53][54][55][56] and organocatalyzed enantioselective radical reactions were recently discussed [57]. However, the field remains not overviewed in general and it is not
  • , the acidic and basic sites of the catalyst are suggested to be involved in the activation of only hydrogen peroxide within a well-defined and deep chiral cavity. The enantioselective approach of sulfide to H2O2 is ensured by the sterically demanding structure of the catalyst. It should also be noted
PDF
Album
Perspective
Published 09 Dec 2022

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

  • Karen R. Winters and
  • Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471–1478, doi:10.3762/bjoc.18.154

Graphical Abstract
  • a chiral pocket or environment for enantioselective transformations within the proximity of the acidic proton and phosphoryl oxygen. Additionally, the choice of phosphoric acid diesters also provides a bifunctional catalyst containing both an acidic and basic site (Figure 1). Despite the proven
  • enantioselective catalyst. On the other hand, their successful completions attest to the inexpensive and scalable requirements we had set. Indole scaffolds The synthesis of racemic tryptophol CPA 1 is shown in Scheme 2. Commercially available tryptophol (5, 225 $/mol) was N-arylated into 6 via copper-catalyzed
  • , however, that the enantiomeric excess increases with an increase in bond length separation between the phosphorus and the R group. From the reaction evaluation we found that dual activation might be required from the catalyst in certain enantioselective reactions. Thus, CPA platforms that reintroduce a
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2022

Oxa-Michael-initiated cascade reactions of levoglucosenone

  • Julian Klepp,
  • Thomas Bousfield,
  • Hugh Cummins,
  • Sarah V. A.-M. Legendre,
  • Jason E. Camp and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2022, 18, 1457–1462, doi:10.3762/bjoc.18.151

Graphical Abstract
  • chemistry; levoglucosenone; oxa-Michael reaction; Introduction (−)-Levoglucosenone (1) is formed from the acid-catalyzed pyrolysis of cellulose along with minor amounts of furfural and 5-methylfurfural [1][2][3]. It has emerged as a promising starting material for enantioselective synthesis from materials
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2022
Graphical Abstract
  • as an enantioselective catalyst for the asymmetric ring opening of terminal epoxides by phenols. A library of α-aryloxy alcohols 3 was thereafter synthesized in good yield and high ee using 2f via the phenolic KR of epichlorohydrin. Keywords: α-aryloxy alcohols; chiral Co–salen; HKR
  • enantioselective synthesis in modern chemistry turns out to be accumulatively essential for the preparation of chiral drugs, which is a huge growing market in the future. Indeed, the asymmetric ring opening of terminal epoxides is one of the most important strategies for synthesizing drug-like building blocks and
  • key organic intermediates in the drug discovery and process chemistry [4][5][6]. Chiral metal–salen complexes were designed for catalyzing reaction processes that resulted in good yield, high regioselective and enantioselective control for the asymmetric ring opening of terminal epoxides. Various
PDF
Album
Supp Info
Letter
Published 10 Oct 2022

Preparation of an advanced intermediate for the synthesis of leustroducsins and phoslactomycins by heterocycloaddition

  • Anaïs Rousseau,
  • Guillaume Vincent and
  • Cyrille Kouklovsky

Beilstein J. Org. Chem. 2022, 18, 1385–1395, doi:10.3762/bjoc.18.143

Graphical Abstract
  • preparation and the coupling of three main fragments (Figure 2): the lactone fragment 3, the central fragment 4 and the cyclohexane fragment 5. We have previously described the enantioselective synthesis of the lactone fragment 3 [18]; we now disclose the synthesis of the oxazinone 4 and attempts for coupling
PDF
Album
Full Research Paper
Published 04 Oct 2022

Enantioselective total synthesis of putative dihydrorosefuran, a monoterpene with an unique 2,5-dihydrofuran structure

  • Irene Torres-García,
  • Josefa L. López-Martínez,
  • Rocío López-Domene,
  • Manuel Muñoz-Dorado,
  • Ignacio Rodríguez-García and
  • Miriam Álvarez-Corral

Beilstein J. Org. Chem. 2022, 18, 1264–1269, doi:10.3762/bjoc.18.132

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • dehydration of the resulting hydrate through short-patch distillation gave the desired vic-tricarbonyl compound 102. 3. α,β-Diketoesters as key intermediates Preussochromone E and F In a short and enantioselective total synthesis of preussochromone E (110) and F (109), Koert et al. used the complex vic
  • ]. Enantioselective aldol reaction using an α-ketoester in the synthesis of (−)-irofulven (87) [29]. Allylboration of a mesoxalic acid ester in the synthesis of (+)-awajanomycin (92) [30][31]. Condensation of a diamine with mesoxolate in the synthesis of (−)-aplaminal (96) [32]. Synthesis of mesoxalic ester amide 102
PDF
Album
Review
Published 15 Sep 2022

Derivatives of benzo-1,4-thiazine-3-carboxylic acid and the corresponding amino acid conjugates

  • Péter Kisszékelyi,
  • Tibor Peňaška,
  • Klára Stankovianska,
  • Mária Mečiarová and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 1195–1202, doi:10.3762/bjoc.18.124

Graphical Abstract
  • isolated. Moreover, the coupling of benzothiazines with amino acids was realized. In doing so, an enantioselective synthesis of the nonproteinogenic amino acid 2-amino-3-propylhexanoic acid was accomplished. Keywords: amino acid; benzothiazine; oxidative dimerization; peptide coupling; stereoselective
PDF
Supp Info
Full Research Paper
Published 09 Sep 2022

Synthesis of tryptophan-dehydrobutyrine diketopiperazine and biological activity of hangtaimycin and its co-metabolites

  • Houchao Xu,
  • Anne Wochele,
  • Minghe Luo,
  • Gregor Schnakenburg,
  • Yuhui Sun,
  • Heike Brötz-Oesterhelt and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2022, 18, 1159–1165, doi:10.3762/bjoc.18.120

Graphical Abstract
  • hangtaimycin, TDD and the hangtaimycin degradation product HTM222 are given. Keywords: antibiotics; enantioselective synthesis; peptides; racemisation; Streptomyces; Introduction Hangtaimycin (1, Scheme 1) was first isolated from Streptomyces spectabilis and shown to possess weak antimicrobial activity
PDF
Album
Supp Info
Letter
Published 07 Sep 2022

Molecular diversity of the base-promoted reaction of phenacylmalononitriles with dialkyl but-2-ynedioates

  • Hui Zheng,
  • Ying Han,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2022, 18, 991–998, doi:10.3762/bjoc.18.99

Graphical Abstract
  • furnished a chiral thiosquaramide-catalyzed tandem Michael–Henry reaction of phenacylmalononitriles and nitroolefins for the enantioselective synthesis of cyclopent-3-ene-1-carboxamides [32] (reaction 2 in Scheme 1). Mohanan and co-workers reported a PBu3-catalyzed [3 + 2] annulation of
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2022

The stereochemical course of 2-methylisoborneol biosynthesis

  • Binbin Gu,
  • Anwei Hou and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2022, 18, 818–824, doi:10.3762/bjoc.18.82

Graphical Abstract
  • 2-methylisoborneol from (S)-2-Me-LPP may be explained by isomerization to 2-Me-GPP and then to (R)-2-Me-LPP. Keywords: biosynthesis; enantioselective synthesis; enzyme mechanisms; gas chromatography; terpenoids; Introduction After its first discovery from Streptomyces [1][2], it has been
  • )-2-Me-LPP is the true pathway intermediate towards compound 1. For this purpose, both enantiomers of 2-Me-LPP were synthesized and enzymatically converted by 2MIBS. Here we report on the enantioselective synthesis of (R)- and (S)-2-Me-LPP and the results from the incubation experiments with 2MIBS
  • . Results and Discussion Enantioselective synthesis of 2-methyllinalyl diphosphate The synthesis of (R)- and (S)-2-Me-LPP started with the Horner–Wadsworth–Emmons reaction [34][35] of sulcatone (2) with triethyl 2-phosphonopropionate to obtain ethyl 2-methylgeranate (3) as a mixture of the E and Z
PDF
Album
Supp Info
Letter
Published 08 Jul 2022

Synthesis of bis-spirocyclic derivatives of 3-azabicyclo[3.1.0]hexane via cyclopropene cycloadditions to the stable azomethine ylide derived from Ruhemann's purple

  • Alexander S. Filatov,
  • Olesya V. Khoroshilova,
  • Anna G. Larina,
  • Vitali M. Boitsov and
  • Alexander V. Stepakov

Beilstein J. Org. Chem. 2022, 18, 769–780, doi:10.3762/bjoc.18.77

Graphical Abstract
  • cyclopropenes with azomethine ylides from ninhydrin were also successfully carried out in a multicomponent fashion [23]. Mention should also be made of the recent advances in developing enantioselective approaches to the synthesis of 3-azabicyclo[3.1.0]hexane derivatives. Deng and co-workers reported the first
  • asymmetric 1,3-dipolar cycloaddition of azomethine ylides and cyclopropenes catalyzed by a chiral Cu-(CH3CN)4BF4/Ph-Phosferrox complex for the construction of 3-azabicyclo[3.1.0]hexane derivatives [25]. Another concise enantioselective approach towards 3-azabicyclo[3.1.0]hexanes is based on a Cp*Ir-catalyzed
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2022

Heteroleptic metallosupramolecular aggregates/complexation for supramolecular catalysis

  • Prodip Howlader and
  • Michael Schmittel

Beilstein J. Org. Chem. 2022, 18, 597–630, doi:10.3762/bjoc.18.62

Graphical Abstract
  • illustrates the opportunities in running enantioselective catalysis in mixed-ligand frameworks. Instead of constructing supramolecular catalysts by functionalization of the linker units, a different approach can be adopted where a catalytically active molecule is encapsulated inside a confined space, as
PDF
Album
Review
Published 27 May 2022

BINOL as a chiral element in mechanically interlocked molecules

  • Matthias Krajnc and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2022, 18, 508–523, doi:10.3762/bjoc.18.53

Graphical Abstract
  • noncovalent interactions between the subcomponents, MIMs have established themselves as an important subdiscipline of supramolecular chemistry. The introduction of chirality into MIMs is of high interest in order to develop applications in which the chirality can be exploited, e.g., in enantioselective
  • -workers, with a strong focus on using rotaxanes with halogen-bond (XB) donors that act as binding sites for anionic guest molecules [23]. In 2017, Beer and co-workers reported the synthesis of the BINOL-containing chiral [2]rotaxanes 64 and their application for enantioselective anion recognition [63
  • desymmetrization reaction of meso-1,2-diols with rotaxane (R)-42. Synthesis of Niemeyer´s axially chiral [2]catenane (S,S)-47. Results for the enantioselective transfer hydrogenation of 2-phenylquinoline with catalysts (S,S)-47, (S)-48, and (S)-49. Synthesis of Niemeyer´s chiral [2]rotaxanes (S)-56/57. Results for
PDF
Album
Review
Published 06 May 2022

The asymmetric Henry reaction as synthetic tool for the preparation of the drugs linezolid and rivaroxaban

  • Martin Vrbický,
  • Karel Macek,
  • Jaroslav Pochobradský,
  • Jan Svoboda,
  • Miloš Sedlák and
  • Pavel Drabina

Beilstein J. Org. Chem. 2022, 18, 438–445, doi:10.3762/bjoc.18.46

Graphical Abstract
  • of these drugs was studied in detail. Highly enantioselective catalysts were tested in the key step of the synthetic procedure, i.e., the asymmetric Henry reaction, under different reaction conditions, using several starting aldehydes. The corresponding nitroaldols as chiral intermediates in the
  • syntheses of these drugs were obtained in high yields and enantiomeric excesses of up to 91% ee. Keywords: asymmetric Henry reaction; enantioselective catalysis; linezolid; oxazolidine-2-one derivatives; rivaroxaban; Introduction Oxazolidine-2-one derivatives represent an important branch of
  • published papers confirmed that the application of the asymmetric Henry reaction represents a promising alternative route for the feasible production of these compounds. Nevertheless, the studies provided only preliminary results, because they included only one enantioselective catalyst in the preparation
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • anomeric hydroperoxides (HPO) to obtain epoxides 40 with moderate ees (Scheme 11B) [100][101]. Bunge and co-workers used the enantiomerically pure dihydroperoxide 41 in the DBU-mediated epoxidation of menadione (10) for the enantioselective synthesis of epoxide 42 (92% yield and 45–66% ee) (Scheme 11C
  • method proved to be effective at recovering approximately 95% of the enantiopure alcohol 47. This allowed the alcohol’s effective reconversion to hydroperoxide 46 and proved to be a useful method for the enantioselective epoxidation of menadione (10) (Scheme 13). Pericyclic reactions The Diels–Alder
  • materials allow for the synthesis of more complex molecules such as natural products. Within this scope, the menadione (10) molecule has been explored as substrate for this versatile reaction. Ryu and co-workers described an enantioselective and structurally selective Diels–Alder reaction for the synthesis
PDF
Album
Review
Published 11 Apr 2022

Unexpected chiral vicinal tetrasubstituted diamines via borylcopper-mediated homocoupling of isatin imines

  • Marco Manenti,
  • Leonardo Lo Presti,
  • Giorgio Molteni and
  • Alessandra Silvani

Beilstein J. Org. Chem. 2022, 18, 303–308, doi:10.3762/bjoc.18.34

Graphical Abstract
  • oxindoles [7][8][9][10][11] and also of aminoboronic acids [12], we recently exploited a molecular hybridization strategy to synthesize chiral oxindole-based β-aminoboronic acids and spiro derivatives [13]. Apart from our work and a quite recent report describing a useful Cu-catalyzed enantioselective
PDF
Album
Supp Info
Letter
Published 10 Mar 2022

Iridium-catalyzed hydroacylation reactions of C1-substituted oxabenzonorbornadienes with salicylaldehyde: an experimental and computational study

  • Angel Ho,
  • Austin Pounder,
  • Krish Valluru,
  • Leanne D. Chen and
  • William Tam

Beilstein J. Org. Chem. 2022, 18, 251–261, doi:10.3762/bjoc.18.30

Graphical Abstract
  • intermediates have found use in the total synthesis of (+)-norchelidonine (an isoquinoline alkaloid) [55], sertraline (an antidepressant) [56], and arnottin I (an anti-inflammatory) [57]. Although OBD 1 has been shown to undergo many different modes of reactivity in both a stereo- and enantioselective manner
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2022

New advances in asymmetric organocatalysis

  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 240–242, doi:10.3762/bjoc.18.28

Graphical Abstract
  • undoubtedly the most efficient way to prepare chiral compounds that our society requires as medicines, materials, or crop protecting agents. Traditionally, enzymes and metal complexes with chiral ligands served as the main type of enantioselective catalysts. Even though small chiral organic compounds have
  • early to stimulate greater developments. Things started to change in the late 1990s when short-chain peptides [3], carbohydrate-based ketones [4][5], and thioureas [6] were shown to catalyze enantioselective transformations. The real breakthrough came in the year 2000 when two teams independently
  • cyclopropenimines exemplify Brønsted base organocatalysts that are useful for diverse reactions not easily accessible by other means. Here, Lambert and co-workers employed this type of catalyst in the formation of pyroglutamates via enantioselective Michael addition of amino ester imines [22]. Phase-transfer
PDF
Editorial
Published 28 Feb 2022

Organocatalytic asymmetric nitroso aldol reaction of α-substituted malonamates

  • Ekta Gupta,
  • Narendra Kumar Vaishanv,
  • Sandeep Kumar,
  • Raja Krishnan Purshottam,
  • Ruchir Kant and
  • Kishor Mohanan

Beilstein J. Org. Chem. 2022, 18, 217–224, doi:10.3762/bjoc.18.25

Graphical Abstract
  • 226031, India Academy of Scientific and Innovative Research, Ghaziabad, 201002, India 10.3762/bjoc.18.25 Abstract A practical enantioselective N-selective nitroso aldol reaction of α-methylmalonamates with a nitrosoarene is reported. The reaction employs the Takemoto thiourea catalyst for the induction
  • of enantioselectivity, and the corresponding optically active oxyaminated malonamates were obtained in reasonably good yields. Keywords: enantioselective; malonamate; nitroso aldol reaction; N-selectivity; Takemoto catalyst; Introduction Nitrosoarenes are versatile building blocks frequently
  • achieve optically active α-aminoxy and α-hydroxyamino carbonyl compounds has received considerable attention in the past decades [24]. In 2003, the Yamamoto group demonstrated for the first time that nitrosobenzene could be used as a practical reagent for the catalytic enantioselective α-aminoxylation
PDF
Album
Supp Info
Letter
Published 21 Feb 2022

Asymmetric organocatalytic Michael addition of cyclopentane-1,2-dione to alkylidene oxindole

  • Estelle Silm,
  • Ivar Järving and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2022, 18, 167–173, doi:10.3762/bjoc.18.18

Graphical Abstract
  • presence of a multifunctional squaramide catalyst. Michael adducts were obtained in high enantioselectivities and in moderate diastereoselectivities. Keywords: cyclopentane-1,2-dione; enantioselective catalysis; Michael addition; organocatalysis; squaramide; Introduction Diketones are generally very
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Bifunctional thiourea-catalyzed asymmetric [3 + 2] annulation reactions of 2-isothiocyanato-1-indanones with barbiturate-based olefins

  • Jiang-Song Zhai and
  • Da-Ming Du

Beilstein J. Org. Chem. 2022, 18, 25–36, doi:10.3762/bjoc.18.3

Graphical Abstract
  • or new methodologies to construct the spirobarbiturates with diverse structures. In recent years, good progress has been achieved in the construction of racemates of spirobarbiturates and the enantioselective synthesis [24][25][26][27][28][29], but only limited progress has been made in the
  • % ee) could still be maintained (Scheme 6b). This one-pot three-component reaction would be more convenient for potential industrial applications. Finally, in order to understand the enantioselective formation process of product 3, we proposed the possible mechanisms for the [3 + 2] cyclization
  • to form intermediate B. Finally, the catalyst C4 is removed in intermediate C and the product 3aa is obtained. Conclusion In summary, we have successfully developed an exceptionally efficient strategy for the enantioselective construction of indanone-derived spirobarbiturates through a simple
PDF
Album
Supp Info
Full Research Paper
Published 04 Jan 2022
Other Beilstein-Institut Open Science Activities