Search results

Search for "reaction mechanism" in Full Text gives 534 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis

  • Grédy Kiala Kinkutu,
  • Catherine Louis,
  • Myriam Roy,
  • Juliette Blanchard and
  • Julie Oble

Beilstein J. Org. Chem. 2023, 19, 582–592, doi:10.3762/bjoc.19.43

Graphical Abstract
  • furfural derivatives by C–H activation, a) in batch: previous works, and b) in continuous flow: this work. C3-alkylation of bidentate imine 1 performed in batch. Optimization of the heating for the alkylation reaction on the homemade pulsed-flow setup. Proposed reaction mechanism for the alkylation
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • desired product 3a in low chemical yield (entry 15, Table 1). On the other hand, 3a was obtained in moderate yield (60%) using methanol as solvent (entry 16, Table 1). To shed light on the reaction mechanism, the formation of an EDA complex between the α-iodosulfone 2a and DABCO was investigated using
  • absorption spectra recorded in acetonitrile in 1 cm path quartz cuvettes. [DABCO]: 0.5 M; [2a]: 0.5 M. 1H NMR titration of DABCO in a solution of 2a in ACN-d3 to detect their halogen-bonding association through the shift of the signal of Hα. Proposed reaction mechanism for the photochemical alkylation of 1a
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

Access to cyclopropanes with geminal trifluoromethyl and difluoromethylphosphonate groups

  • Ita Hajdin,
  • Romana Pajkert,
  • Mira Keßler,
  • Jianlin Han,
  • Haibo Mei and
  • Gerd-Volker Röschenthaler

Beilstein J. Org. Chem. 2023, 19, 541–549, doi:10.3762/bjoc.19.39

Graphical Abstract
  • confirm the lack of selectivity during the cyclopropanation process with terminal alkenes, the reaction mechanism between the diazo reagent 5 and styrene as a model substrate in the presence of CuI catalyst was investigated by density functional theory (DFT) calculations (Table 2). In the first step, CuI
PDF
Album
Supp Info
Letter
Published 25 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • salicylaldehydes with EWGs failed to react. The authors hypothesized the reaction mechanism begins with the association of the Rh(III) catalyst with the hydroxy group of salicylaldehyde (151a) resulting in a selective cleavage of the aldehyde C–H bond producing the rhodocycle 153 which side-on coordinates with the
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • , respectively). Regarding the reaction mechanism, the active Co(III) complex G was obtained from the dimeric catalyst [Cp*CoI2]2 in the presence AgSCF3 and/or NaOPiv·H2O. Then, the reversible formation of the metallacycle H occurs, which after a ligand exchange in the presence of AgSCF3 leads to the formation
PDF
Album
Review
Published 17 Apr 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • ]. Through a series of single-turnover experiments a reaction mechanism was proposed where H-B-9-BBN catalysed the dehydrocoupling of carboxylic acids 47 with HBpin through B‒O/B‒H transborylation, to give the acyloxy boronic ester 49. This underwent direct defluoronative carboxylation with the alkyl
  • -catalysed hydroboration of unsaturated compounds and the general reaction mechanism. a) Gallium-catalysed asymmetric hydroboration of ketones and the proposed mechanism. b) Gallium-catalysed hydroboration of CO2. c) Gallium-catalysed hydroboration of ketones and imines. Gallium(I)-catalysed allylation
PDF
Album
Review
Published 21 Mar 2023

An accelerated Rauhut–Currier dimerization enabled the synthesis of (±)-incarvilleatone and anticancer studies

  • Tharun K. Kotammagari,
  • Sweta Misra,
  • Sayantan Paul,
  • Sunita Kunte,
  • Rajesh G. Gonnade,
  • Manas K. Santra and
  • Asish K. Bhattacharya

Beilstein J. Org. Chem. 2023, 19, 204–211, doi:10.3762/bjoc.19.19

Graphical Abstract
  • dimerized product (±)-4. Proposed reaction mechanism for the formation of compound (±)-4 under TBAF-mediated Rauhut–Currier reaction. Synthesis of (±)-incarvilleatone (1) from RC dimerized product (±)-4. Separation of rac-incarvilleatone (1) and determination of absolute configurations of both the
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • analysis of lactam 19l. In order to shed light on the details of the reaction mechanism, we have performed carefully designed mechanistic studies which consist of experiments on the effect of β-silicon stabilization, the alkene geometry of the α,β-unsaturated acyl chloride reactants, and adventitious water
  • and control experiments provided valuable insights on the reaction mechanism including the importance of the β-silicon effect and the alkene geometry of the α,β-unsaturated acyl chloride reactants on reactivity, different potential modes of cyclization, and the effect of adventitious water on the aza
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • oxindole 3ap in 63% yield. In order to gain insight into the reaction mechanism, some control experiments were further performed. When a radical scavenger such as 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) was added to the catalytic system under standard conditions, the reaction was fully inhibited, and
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • -diamines [111] (Scheme 21A). The proposed reaction mechanism suggests the generation of a triarylamine radical cation, which oxidizes the vinylarene by a SET mechanism. The resultant vinylarene cation radical X is attacked by the sulfamide nucleophile with Y formation. The second oxidative SET leads to the
PDF
Album
Perspective
Published 09 Dec 2022

Navigating and expanding the roadmap of natural product genome mining tools

  • Friederike Biermann,
  • Sebastian L. Wenski and
  • Eric J. N. Helfrich

Beilstein J. Org. Chem. 2022, 18, 1656–1671, doi:10.3762/bjoc.18.178

Graphical Abstract
  • secondary metabolite biosynthetic enzymes are distant paralogs of enzymes involved in primary metabolism [63][71]. These NP biosynthetic enzymes are hypothesized to have undergone significant sequence and selectivity changes while still operating based on the same reaction mechanism (e.g., fatty acid
PDF
Album
Perspective
Published 06 Dec 2022

Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone

  • Motoyuki Isoda,
  • Kazuyuki Sato,
  • Kenta Kameda,
  • Kana Wakabayashi,
  • Ryota Sato,
  • Hideki Minami,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1642–1648, doi:10.3762/bjoc.18.176

Graphical Abstract
  • . Mechanistic investigation of the intramolecular cyclization The reaction mechanism of the intramolecular cyclization can only be speculative at this stage. We have already reported the generation of a rhodium hydride (Rh–H) complex from RhCl(PPh3)3 and Et2Zn, in which the reaction with tert-butyl acrylate
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2022

One-pot double annulations to confer diastereoselective spirooxindolepyrrolothiazoles

  • Juan Lu,
  • Bin Yao,
  • Desheng Zhan,
  • Zhuo Sun,
  • Yun Ji and
  • Xiaofeng Zhang

Beilstein J. Org. Chem. 2022, 18, 1607–1616, doi:10.3762/bjoc.18.171

Graphical Abstract
  • different R1 was employed for the synthesis to give 7f with COMe in a trace amount and no product 7g with a Ph group. The following reactions with aliphatic aldehydes gave 7h and 7i as complex mixtures [54][55][56][57][58][59][71]. The reaction mechanism of the double annulations for sequential N,S
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • electrophilicity in case of electron-withdrawing groups. Imidazole N-oxides bearing naphthyl (23g) and n-butyl (23f) groups at the N-1 position also afforded the desired products in 93% and 95% yields, respectively. Notably, no product was isolated in case of glyoxal monoxime. The plausible reaction mechanism
  • products. Interestingly, unstable enones formed from the CH-acids like 4-hydroxy-6-methylpyrone and 4-hydroxycoumarin also successfully gave the desired products 35p and 35q under the standard conditions. The proposed reaction mechanism proceeded through the same pathway as outlined in Scheme 5. The
PDF
Album
Review
Published 22 Nov 2022

Simple synthesis of multi-halogenated alkenes from 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane)

  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1567–1574, doi:10.3762/bjoc.18.167

Graphical Abstract
  • 2n was 32% (Table 2, entry 13). In the case of aminophenol (3o), nucleophilic addition occurred predominantly at the phenoxide position and the product was obtained in moderate yield (Table 2, entry 14). An aryl iodide also participated in the reaction (Table 2, entry 15). We propose the reaction
  • mechanism shown in Scheme 2 [15][26]. In the reaction medium, 3 is deprotonated by KOH to generate phenoxide ion 4, which acts as a base and as a nucleophile. Removal of an acidic hydrogen from halothane provides 5, which is a key intermediate in the reaction. Intermediate 5 is sufficiently electrophilic to
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2022

A facile approach to spiro[dihydrofuran-2,3'-oxindoles] via formal [4 + 1] annulation reaction of fused 1H-pyrrole-2,3-diones with diazooxindoles

  • Pavel A. Topanov,
  • Anna A. Maslivets,
  • Maksim V. Dmitriev,
  • Irina V. Mashevskaya,
  • Yurii V. Shklyaev and
  • Andrey N. Maslivets

Beilstein J. Org. Chem. 2022, 18, 1532–1538, doi:10.3762/bjoc.18.162

Graphical Abstract
  • mechanism of formal [4 + 1] cycloaddition of FPDs 1 with diazooxindoles 2 (negative charge delocalization is colored in blue); B) plausible base-promoted reaction mechanism of FPD 1i and 3-bromooxindole (4, negative charge delocalization is colored blue). Reaction of FPD 1a and diazooxindole 2a in different
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2022

Molecular and macromolecular electrochemistry: synthesis, mechanism, and redox properties

  • Shinsuke Inagi and
  • Mahito Atobe

Beilstein J. Org. Chem. 2022, 18, 1505–1506, doi:10.3762/bjoc.18.158

Graphical Abstract
  • of organic molecules and the estimation of subsequent reactions, resulting in a much better understanding of the reaction mechanism. Furthermore, because organic electrosynthesis requires the setting of many complex parameters, such as applied potential, current density, electrolyte, temperature, and
PDF
Editorial
Published 26 Oct 2022
Graphical Abstract
  • the asymmetric ring opening of epichlorohydrin with different phenols in the presence of 2f (0.5 mol %), resulting in good yields and high ee (up to 99%). Further application of chiral Co–salen complexes and their reaction mechanism will be addressed in the due course. Representative asymmetric Co
PDF
Album
Supp Info
Letter
Published 10 Oct 2022

Make or break: the thermodynamic equilibrium of polyphosphate kinase-catalysed reactions

  • Michael Keppler,
  • Sandra Moser,
  • Henning J. Jessen,
  • Christoph Held and
  • Jennifer N. Andexer

Beilstein J. Org. Chem. 2022, 18, 1278–1288, doi:10.3762/bjoc.18.134

Graphical Abstract
  • relevant, as the ATP produced will be directly used by the main reaction. In future, it will be interesting to investigate the detailed reaction mechanism including the effects of the polyP chain length and counter ions as well as to study the thermodynamic activity of the enzymes. Especially in reaction
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2022

Ferrocenoyl-adenines: substituent effects on regioselective acylation

  • Mateja Toma,
  • Gabrijel Zubčić,
  • Jasmina Lapić,
  • Senka Djaković,
  • Davor Šakić and
  • Valerije Vrček

Beilstein J. Org. Chem. 2022, 18, 1270–1277, doi:10.3762/bjoc.18.133

Graphical Abstract
  • /bjoc.18.133 Abstract A series of N6-substituted adenine–ferrocene conjugates was prepared and the reaction mechanism underlying the synthesis was explored. The SN2-like reaction between ferrocenoyl chloride and adenine anions is a regioselective process in which the product ratio (N7/N9-ferrocenoyl
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH4I

  • Shang-Feng Yang,
  • Pei Li,
  • Zi-Lin Fang,
  • Sen Liang,
  • Hong-Yu Tian,
  • Bao-Guo Sun,
  • Kun Xu and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2022, 18, 1249–1255, doi:10.3762/bjoc.18.130

Graphical Abstract
  • . To demonstrate the practicability of the reaction, a scale-up reaction of ethyl acetoacetate (1a, 28 mmol, 3.64 g) and thiourea (2a,14 mmol, 1.05 g) was carried out under the optimized conditions to give 3a in 50% yield (Scheme 3). In order to better understand the iodide-mediated reaction mechanism
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2022

Lewis acid-catalyzed Pudovik reaction–phospha-Brook rearrangement sequence to access phosphoric esters

  • Jin Yang,
  • Dang-Wei Qian and
  • Shang-Dong Yang

Beilstein J. Org. Chem. 2022, 18, 1188–1194, doi:10.3762/bjoc.18.123

Graphical Abstract
  • . Additional experiments were conducted in order to clarify the reaction mechanism. Under standard conditions, only pyridin-2-ylmethyl diphenylphosphinate (3aa) was produced, and the Pudovik adduct (hydroxy(pyridin-2-yl)methyl)diphenylphosphine oxide (4aa) was not detected (Scheme 4a). The control experiment
PDF
Album
Supp Info
Letter
Published 09 Sep 2022

Electro-conversion of cumene into acetophenone using boron-doped diamond electrodes

  • Mana Kitano,
  • Tsuyoshi Saitoh,
  • Shigeru Nishiyama,
  • Yasuaki Einaga and
  • Takashi Yamamoto

Beilstein J. Org. Chem. 2022, 18, 1154–1158, doi:10.3762/bjoc.18.119

Graphical Abstract
  • propose a reaction mechanism (Table 2). First, we carried out the electrolysis of 1 in MeCN–MeOH to confirm whether the reaction intermediate is a radical or cationic species (Table 2, entry 1). As a result, methyl cumyl ether, a methoxy adduct to the benzyl position of 1, was obtained as the main product
  • Et4NClO4 (0.1 M). Scan rate: 100 mV/s. Proposed reaction mechanism of electro-conversion of cumene (1) into acetophenone (3). Electro-conversion of 1. Control electrolysis experiments of 1a. Supporting Information Supporting Information File 244: Characterization data and 1H NMR spectra of isolated
PDF
Album
Supp Info
Letter
Published 07 Sep 2022

Experimental and theoretical studies on the synthesis of 1,4,5-trisubstituted pyrrolidine-2,3-diones

  • Nguyen Tran Nguyen,
  • Vo Viet Dai,
  • Nguyen Ngoc Tri,
  • Luc Van Meervelt,
  • Nguyen Tien Trung and
  • Wim Dehaen

Beilstein J. Org. Chem. 2022, 18, 1140–1153, doi:10.3762/bjoc.18.118

Graphical Abstract
  • -Trisubstituted pyrrolidine-2,3-dione derivatives were prepared from the above mentioned 2-pyrrolidinone derivatives and aliphatic amines, which exist in enamine form and are stabilized by an intramolecular hydrogen bond. A possible reaction mechanism between 3-pyrroline-2-one and aliphatic amine (CH3NH2) was
  • enamine derivatives. As compared to glacial acetic acid [42], ethanol has showed to be the best solvent for the synthesis of these pyrrolidine-2,3-diones and a dramatic increase in the yield of the desired products was also observed. In addition, understanding of the reaction mechanism at the molecular
  • )ethylene-1,5-diphenylpyrrolidine-2,3-dione in the present work. To the best of our knowledge, it is the first time the reaction mechanism between 3-pyrrolin-2-one derivative and methylamine was explained in detail via computational studies. Results and Discussion A model reaction of benzaldehyde (1a
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2022

Synthesis of protected precursors of chitin oligosaccharides by electrochemical polyglycosylation of thioglycosides

  • Md Azadur Rahman,
  • Kana Kuroda,
  • Hirofumi Endo,
  • Norihiko Sasaki,
  • Tomoaki Hamada,
  • Hiraku Sakai and
  • Toshiki Nokami

Beilstein J. Org. Chem. 2022, 18, 1133–1139, doi:10.3762/bjoc.18.117

Graphical Abstract
  • example, there are two pseudo-tetrasaccharide structures 11a and 11b, which would be hard to separate by preparative-scale purification techniques. Reaction mechanism There are two possible pathways for chain elongation in electrochemical polyglycosylation (Figure 7). In path a, monosaccharide 1a is
  • hexasaccharide 6a (5%, 3.1 μmol, 8.2 mg). We ran the process up to the third cycle and isolated octasaccharide 8a (3%, 2.3 μmol, 7.6 mg), which was never isolated after the first cycle and the second cycle. These results also supported the proposed reaction mechanism path a in Figure 7. Conclusion In conclusion
  • , we have developed a practical method to synthesize longer-chain oligosaccharides within a short period of time through electrochemical polyglycosylation. A rational reaction mechanism was proposed based on oxidation potentials of the oligosaccharides, and further modification of the protocol was
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2022
Other Beilstein-Institut Open Science Activities