Search results

Search for "ESI" in Full Text gives 569 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Skeletocutins M–Q: biologically active compounds from the fruiting bodies of the basidiomycete Skeletocutis sp. collected in Africa

  • Tian Cheng,
  • Clara Chepkirui,
  • Cony Decock,
  • Josphat C. Matasyoh and
  • Marc Stadler

Beilstein J. Org. Chem. 2019, 15, 2782–2789, doi:10.3762/bjoc.15.270

Graphical Abstract
  • , solvent A: H2O + 0.1% formic acid, solvent B: acetonitrile + 0.1% formic acid, elution gradient: 5% solvent B for 0.5 min, increasing solvent B to 100% within 19.5 min, 100% solvent B for 5 min, flow rate: 0.6 mL/min, UV–vis detection at λ = 200–600 nm) and ESI–TOF–MS analysis (maXis™ system, Bruker, scan
  • range: 100–2500 m/z, capillary voltage: 4500 V, drying temperature: 200 °C). UV–vis spectra were recorded with a Shimadzu UV-2450 UV–vis spectrophotometer. The chromatogram in Figure 1 was recorded on a Bruker Agilent 1260 Infinity Series equipped with DAD and an ESI ion trap mass spectrometer (amaZon
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2019

A chiral self-sorting photoresponsive coordination cage based on overcrowded alkenes

  • Constantin Stuckhardt,
  • Diederik Roke,
  • Wojciech Danowski,
  • Edwin Otten,
  • Sander J. Wezenberg and
  • Ben L. Feringa

Beilstein J. Org. Chem. 2019, 15, 2767–2773, doi:10.3762/bjoc.15.268

Graphical Abstract
  • by using the Stokes–Einstein equation [54]. By means of ESI high-resolution mass spectrometry, we were able to verify the Pd2L4 constitution of both cages. The HRMS spectrum of Pd2(stable Z-1)4 shows the signals for the cations [Pd2(stable Z-1)4(NO3)3]+, [Pd2(stable Z-1)4(NO3)2]2+, [Pd2(stable Z-1)4
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2019

Plasma membrane imaging with a fluorescent benzothiadiazole derivative

  • Pedro H. P. R. Carvalho,
  • Jose R. Correa,
  • Karen L. R. Paiva,
  • Daniel F. S. Machado,
  • Jackson D. Scholten and
  • Brenno A. D. Neto

Beilstein J. Org. Chem. 2019, 15, 2644–2654, doi:10.3762/bjoc.15.257

Graphical Abstract
  • ) 156.4, 155.8, 144.1, 130.9, 129.2, 126.4, 123.3, 120.1, 111.9. 71.50, 71.47, 70.2, 69.9, 69.3, 38.9; HRMS (ESI-Q-TOF) calcd. for C18H23N4O3S+, 375.1485; found, 375.1460. Theoretical calculations. All DFT calculations were performed using the Gaussian 09 suite of programs [64]. Geometry optimizations
PDF
Album
Supp Info
Letter
Published 06 Nov 2019

Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis

  • Heather J. Lacey,
  • Cameron L. M. Gilchrist,
  • Andrew Crombie,
  • John A. Kalaitzis,
  • Daniel Vuong,
  • Peter J. Rutledge,
  • Peter Turner,
  • John I. Pitt,
  • Ernest Lacey,
  • Yit-Heng Chooi and
  • Andrew M. Piggott

Beilstein J. Org. Chem. 2019, 15, 2631–2643, doi:10.3762/bjoc.15.256

Graphical Abstract
  • an Apollo II ESI/MALDI Dual source or a Q Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) by direct infusion. NMR data were recorded in DMSO-d6 on either a Bruker Avance III 500 or a Bruker Avance II DRX-600K spectrometer. All NMR spectra were
  • −205 (c 0.03, MeOH); UV (MeCN) λmax (log ε) 200 (4.19); 212 (3.71) nm; HRMS–ESI (+, m/z): [M + Na]+ calcd. for C15H22NaO5+, 305.1359; found, 305.1363. Nanangenine B (2): white powder; [α]D20 −226 (c 0.06, MeOH); UV (MeCN) λmax (log ε) 200 (4.08); 208 (3.76) nm; HRMS–ESI (+, m/z): [M + Na]+ calcd. for
  • C21H32NaO6+, 403.2091; found, 403.2096. Isonanangenine B (3): white powder; [α]D20 −180 (c 0.04, MeOH); UV (MeCN) λmax (log ε) 200 (4.42); 207 (4.21) nm; HRMS–ESI (+, m/z): [M + Na]+ calcd. for C21H32NaO6+, 403.2091; found, 403.2094. Nanangenine C (4): white powder; [α]D20 −289 (c 0.2, MeOH); UV (MeCN) λmax
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2019

AgNTf2-catalyzed formal [3 + 2] cycloaddition of ynamides with unprotected isoxazol-5-amines: efficient access to functionalized 5-amino-1H-pyrrole-3-carboxamide derivatives

  • Ziping Cao,
  • Jiekun Zhu,
  • Li Liu,
  • Yuanling Pang,
  • Laijin Tian,
  • Xuejun Sun and
  • Xin Meng

Beilstein J. Org. Chem. 2019, 15, 2623–2630, doi:10.3762/bjoc.15.255

Graphical Abstract
  • ), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), and m (multiplet). All melting points are uncorrected and determined on an X-4 digital microscopic melting point apparatus. HRMS were measured using electrospray ionization (ESI). Ynamide compounds 4a–q were prepared according to the
  • ESI (m/z): [M + H]+ calcd for C20H22N3O3S, 384.1376; found, 384.1375. Selected bioactive molecules containing the 5-amino-1H-pyrrole-3-carboxamide motif. Scope with regard to ynamide 4. All reactions were carried out with ynamide 4 (0.2 mmol), isoxazole 8 (0.22 mmol, 1.1 equiv) with AgNTf2 (5 mol
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2019

Anion-driven encapsulation of cationic guests inside pyridine[4]arene dimers

  • Anniina Kiesilä,
  • Jani O. Moilanen,
  • Anneli Kruve,
  • Christoph A. Schalley,
  • Perdita Barran and
  • Elina Kalenius

Beilstein J. Org. Chem. 2019, 15, 2486–2492, doi:10.3762/bjoc.15.241

Graphical Abstract
  • and studied by multiple gas-phase techniques, ESI-QTOF-MS, IRMPD, and DT-IMMS experiments, as well as DFT calculations. The comparison of classical resorcinarenes with pyridinearenes by MS and NMR experiments reveals clear differences in their host–guest chemistry and implies that cation encapsulation
  • been previously detected by ESI-MS [7]. Very recently, with the help of ion mobility mass spectrometry (IM-MS), we showed that pyridine[4]arenes favor encapsulation of neutral molecules over anionic species and anions are in fact complexed in an exo-position (exclusion complexation) between the lower
  • studies with ESI-Q-TOF mass spectrometry. Complex formation was tested with the following series of cationic guests: MeNH3+, Me2NH2+, Me3NH+, Me4N+, EtNH3+, Et2NH2+, Et4N+ and Pr4N+, which were used as the corresponding Cl− or Br− salts. None of the cations MeNH3+, Me2NH2+, Me3NH+, EtNH3+, Et2NH2+ or Pr4N
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2019

Indium-mediated C-allylation of melibiose

  • Christian Denner,
  • Manuel Gintner,
  • Hanspeter Kählig and
  • Walther Schmid

Beilstein J. Org. Chem. 2019, 15, 2458–2464, doi:10.3762/bjoc.15.238

Graphical Abstract
  • (C-4’), 67.28 (C-3’), 66.60 (C-5’), 65.44 (C-1), 61.59 (C-6’), 35.34 (C-7), 20.69, 20.66, 20.63, 20.63, 20.62, 20.61, 20.61, 20.56, 20.50 (9 × O(C=O)CH3) ppm; HRMS (ESI+) m/z: [M + Na]+ calcd for C33H46O20Na+, 785.2475; found, 785.2473. CCDC 1922520 contains the supplementary crystallographic data
  • =O)CH3) ppm; HRMS (ESI+) m/z: [M + Na]+ calcd for C33H46O20Na+, 785.2475; found, 785.2479. 2’,3’,4’,6’-Tetra-O-acetyl-α-ᴅ-galactopyranosyl-(1’→8)-1,3,4,6,7-penta-O-acetyl-2-deoxy-α-ᴅ-glycero-ᴅ-ido-octopyranose (5-syn-β): Compound (2-syn) (115 mg, 0.151 mmol) was dissolved in MeOH (15 mL) and treated
  • ), 70.36 (C-6), 67.93 (C-2’), 67.79 (C-4’), 67.69 (C-3), 67.37 (C-3’), 66.45 (C-5’), 65.77 (C-4), 65.74 (C-8), 61.35 (C-6’), 29.95 (C-2), 20.97, 20.92, 20.80, 20.74, 20.72, 20.70, 20.66, 20.66, 20.62 (9 × O(C=O)CH3) ppm; HRMS (ESI+) m/z: [M + NH4]+ calcd for C32H48NO21+, 782.2713; found, 782.2719. 2’,3’,4
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2019

Combining the Ugi-azide multicomponent reaction and rhodium(III)-catalyzed annulation for the synthesis of tetrazole-isoquinolone/pyridone hybrids

  • Gerardo M. Ojeda,
  • Prabhat Ranjan,
  • Pavel Fedoseev,
  • Lisandra Amable,
  • Upendra K. Sharma,
  • Daniel G. Rivera and
  • Erik V. Van der Eycken

Beilstein J. Org. Chem. 2019, 15, 2447–2457, doi:10.3762/bjoc.15.237

Graphical Abstract
  • chromatographic solvents is presented as volume:volume ratios. Isolated compounds were submitted to HRMS using an Agilent 6220A Time of Flight MSD spectrometer equipped with an ESI ionization source. IR spectra were recorded on a Bruker Alpha FTIR spectrometer. Only frequencies (ν, in cm−1) of the most relevant
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2019

Excited state dynamics for visible-light sensitization of a photochromic benzil-subsituted phenoxyl-imidazolyl radical complex

  • Yoichi Kobayashi,
  • Yukie Mamiya,
  • Katsuya Mutoh,
  • Hikaru Sotome,
  • Masafumi Koga,
  • Hiroshi Miyasaka and
  • Jiro Abe

Beilstein J. Org. Chem. 2019, 15, 2369–2379, doi:10.3762/bjoc.15.229

Graphical Abstract
  • solvents. Mass spectra (ESI-TOF-MS) were measured by using a Bruker micrOTOFII-AGA1. All reagents were purchased from TCI, Wako Co. Ltd., Aldrich Chemical Company, Inc. and Kanto Chemical Co., Inc., and were used without further purification. The synthetic procedure of Benzil-PIC is shown in Scheme 2. The
  • isomers), 7.33–7.30 (m, 4H, two structural isomers), 7.07–7.04 (m, 4H, two structural isomers), 6.73–6.69 (m, 4H, two structural isomers); ESI-TOF MS m/z: [M + H]+ calcd for C35H24N2O3: 521.1859691; found, 521.1836034. Benzil-PIC A solution of potassium ferricyanide (0.968 g, 2.94 mmol) and KOH (0.741 g
  • , 1H), 7.31–7.29 (m, 2H), 7.16 (d, J = 7.7 Hz, 1H), 6.64 (d, J = 10.0 Hz, 2H), 6.36 (d, J = 10.0 Hz, 2H); ESI-TOF MS m/z: [M + H]+ calcd for C35H22N2O3, 519.1703190; found, 519.1696883. Experimental setups Steady-state measurements Steady-state absorption spectra were measured with an UV-3600 Plus
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2019

Isolation and biosynthesis of an unsaturated fatty acid with unusual methylation pattern from a coral-associated bacterium Microbulbifer sp.

  • Amit Raj Sharma,
  • Enjuro Harunari,
  • Tao Zhou,
  • Agus Trianto and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2019, 15, 2327–2332, doi:10.3762/bjoc.15.225

Graphical Abstract
  • unsaturation on the basis of its NMR and HR-ESI-TOFMS (m/z 181.1230 [M − H]−; calcd for C11H17O2, 181.1229) data. The UV spectrum of 1 in methanol exhibited an absorption maximum at 262 nm. The IR absorption bands at 1678 and 2800–3200 cm−1 suggested the presence of carboxyl group. The 1H and 13C NMR data of 1
  • was recorded on a Shimadzu UV-1800 spectrophotometer. The IR spectrum was measured on a Perkin-Elmer Spectrum 100. NMR spectra were obtained on a Bruker AVANCE 500 spectrometer in CDCl3 using the signals of the residual solvent proton (δH 7.26) and carbon (δH 77.0) as internal standards. HR-ESI-TOFMS
  • (50:50) to yield (2Z,4E)-3-methyl-2,4-decadienoic acid (1, 8.0 mg, tR 20.5 min). (2Z,4E)-3-Methyl-2,4-decadienoic acid (1): colorless amorphous solid; UV (MeOH) λmax (log ε) 262 (4.16) nm; IR (ATR) νmax 2952, 2923, 2852, 2585, 1678, 1662 cm−1; 1H and 13C NMR data, see Table 1; HR-ESI-TOFMS m/z
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2019

Azologization and repurposing of a hetero-stilbene-based kinase inhibitor: towards the design of photoswitchable sirtuin inhibitors

  • Christoph W. Grathwol,
  • Nathalie Wössner,
  • Sören Swyter,
  • Adam C. Smith,
  • Enrico Tapavicza,
  • Robert K. Hofstetter,
  • Anja Bodtke,
  • Manfred Jung and
  • Andreas Link

Beilstein J. Org. Chem. 2019, 15, 2170–2183, doi:10.3762/bjoc.15.214

Graphical Abstract
  • apparatus from Büchi and are uncorrected. High accuracy mass spectra were recorded on a Shimadzu LCMS-IT-TOF using ESI ionization. Purity of final compounds was determined by HPLC with DAD (applying the 100% method at 220 nm). Preparative and analytical HPLC were performed using Shimadzu devices CBM-20A, LC
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2019

Friedel–Crafts approach to the one-pot synthesis of methoxy-substituted thioxanthylium salts

  • Kenta Tanaka,
  • Yuta Tanaka,
  • Mami Kishimoto,
  • Yujiro Hoshino and
  • Kiyoshi Honda

Beilstein J. Org. Chem. 2019, 15, 2105–2112, doi:10.3762/bjoc.15.208

Graphical Abstract
  • on a JEOL JNM AL-400 (376 MHz) or a JEOL JNM ECA-500 (471 MHz) spectrometer with hexafluorobenzene (C6F6: δ −164.9 ppm) as internal standard. High-resolution mass spectra (HRMS) were obtained with a Hitachi Nanofrontier LD Spectrometer (ESI/TOF). Elemental analyses of carbon, hydrogen, nitrogen, and
  • , 6H); 13C NMR (126 MHz, CDCl3) δ 168.3. 165.5. 165.2. 147.8. 142.2. 127.2. 127.0. 125.6. 116.9. 101.8. 101.4. 57.7. 56.7; 19F NMR (376 MHz, CDCl3) δ −81.3; IR (ATR): 1585, 1219, 1143, 1026, 634 cm−1; HRMS (ESI+) m/z: [M]+ calcd for C23H21O4S, 393.1155; found, 393.1171; anal. calcd for C24H21F3O7S2: C
  • , 1245, 1148, 1026, 634 cm−1; HRMS (ESI+) m/z: [M]+ calcd for C27H23O4S, 443.1312; found, 443.1316. The generality of diaryl sulfide 1 and benzoyl chloride 2. aThe reaction was carried out with 1a (2.0 mmol), 2a (6.0 mmol), TfOH (3.0 equiv) in chlorobenzene (40.0 mL) at reflux for 1 h under N2. b2 (2.0
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2019

Multiple threading of a triple-calix[6]arene host

  • Veronica Iuliano,
  • Roberta Ciao,
  • Emanuele Vignola,
  • Carmen Talotta,
  • Patrizia Iannece,
  • Margherita De Rosa,
  • Annunziata Soriente,
  • Carmine Gaeta and
  • Placido Neri

Beilstein J. Org. Chem. 2019, 15, 2092–2104, doi:10.3762/bjoc.15.207

Graphical Abstract
  • dialkylammonium axles. The formation of pseudo[2]rotaxane, pseudo[3]rotaxane, and pseudo[4]rotaxane by threading one, two, and three, respectively, calix-wheels of 6 has been studied by 1D and 2D NMR, DOSY, and ESI-FT-ICR MS/MS experiments. The use of a directional alkylbenzylammonium axle led to the
  • -ESI-FT-ICR mass spectrum confirms the formation of 6 thanks to the presence of a molecular ion peak at 3283.1748 m/z (calcd 3283.1319 for C222H288KO18+). 1H and 13C NMR spectra of 6 were consistent with the C3-symmetry of the molecule. In details, three singlets were present in the 1H NMR spectrum of
  • axle 7+ was studied by HR-ESI-FT-ICR mass spectrometry and 1D/2D NMR (Figure 3). A 1:1 mixture of 6 and 7+·TFPB− in CHCl3 was stirred at 298 K for 15 min, until the solution was clarified, and then used for mass spectrometry analysis. An ESI-FT-ICR mass spectrum of this solution (Figure 3, bottom
PDF
Album
Supp Info
Letter
Published 03 Sep 2019

Bipolenins K–N: New sesquiterpenoids from the fungal plant pathogen Bipolaris sorokiniana

  • Chin-Soon Phan,
  • Hang Li,
  • Simon Kessler,
  • Peter S. Solomon,
  • Andrew M. Piggott and
  • Yit-Heng Chooi

Beilstein J. Org. Chem. 2019, 15, 2020–2028, doi:10.3762/bjoc.15.198

Graphical Abstract
  • coupled to an Agilent 6130 Quadrupole MS with an ESI source. The NMR spectra were recorded on Bruker Avance III HD 500 or AV600 spectrometers. The ECD spectra were recorded on a Jasco J-810 spectropolarimeter with MeOH as solvent. Flash cartridge (Reveleris, HP-silica, 12 g, 20 µm), Kinetex C18
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2019

Isolation and characterisation of irinans, androstane-type withanolides from Physalis peruviana L.

  • Annika Stein,
  • Dave Compera,
  • Bianka Karge,
  • Mark Brönstrup and
  • Jakob Franke

Beilstein J. Org. Chem. 2019, 15, 2003–2012, doi:10.3762/bjoc.15.196

Graphical Abstract
  • , Waters 2424 ELS detector, and a Waters SQ Detector 2 for mass spectrometry in ESI+ and ESI– modes between m/z 150 and 1000. In analytical mode, a Phenomenex Kinetex column (2.6 µm, C18, 100 Å, 4.6 × 100 mm) was used with a gradient of [solvent A: H2O + 0.05% formic acid; solvent B: acetonitrile + 0.045
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Attempted synthesis of a meta-metalated calix[4]arene

  • Christopher D. Jurisch and
  • Gareth E. Arnott

Beilstein J. Org. Chem. 2019, 15, 1996–2002, doi:10.3762/bjoc.15.195

Graphical Abstract
  • functional group. General approach by Albrecht for MIC directed cyclometalation via C–H activation; M = Ru(II), Ir(III) or Rh(III). Concept of cyclometalated calix[4]arene target. High-resolution mass spectrum (ESI+) of putative ruthenacycle calix[4]arene 13. Synthesis of model mesoionic carbene 5. Attempted
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2019

Synthesis and anion binding properties of phthalimide-containing corona[6]arenes

  • Meng-Di Gu,
  • Yao Lu and
  • Mei-Xiang Wang

Beilstein J. Org. Chem. 2019, 15, 1976–1983, doi:10.3762/bjoc.15.193

Graphical Abstract
  • investigate their anion binding behaviour. Taking compound 3a as a representative, we examined the interaction of macrocycles 3 with anions of tetra-n-butylammonium salts by means of electron spray ionization (ESI) mass spectrometry. It was found that the mass spectra of mixed samples of 3a with n-Bu4NX gave
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Complexation of 2,6-helic[6]arene and its derivatives with 1,1′-dimethyl-4,4′-bipyridinium salts and protonated 4,4'-bipyridinium salts: an acid–base controllable complexation

  • Jing Li,
  • Qiang Shi,
  • Ying Han and
  • Chuan-Feng Chen

Beilstein J. Org. Chem. 2019, 15, 1795–1804, doi:10.3762/bjoc.15.173

Graphical Abstract
  • -polar solvent, acetone hampers or competes the intermolecular non-covalent interactions between the hosts and the guests, and thus resulted in a decrease of the host–guest complexation. ESIMS studies of the formation of host–guest complexes The electrospray ionization (ESI) mass spectra also confirmed
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Synthesis, photophysical and electrochemical properties of pyridine, pyrazine and triazine-based (D–π–)2A fluorescent dyes

  • Keiichi Imato,
  • Toshiaki Enoki,
  • Koji Uenaka and
  • Yousuke Ooyama

Beilstein J. Org. Chem. 2019, 15, 1712–1721, doi:10.3762/bjoc.15.167

Graphical Abstract
  • , 124.50, 124.79, 129.58, 130.62, 133.57, 139.41, 141.56, 142.95, 147.31, 148.55, 153.55, 167.62 ppm (one aromatic carbon signal was not observed due to overlapping resonances); HRMS–ESI (m/z): [M + H] + calcd. for C67H56N7S2, 1022.40331; found, 1022.40344. Chemical structures of the (D–π–)2A fluorescent
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2019

Synthesis, enantioseparation and photophysical properties of planar-chiral pillar[5]arene derivatives bearing fluorophore fragments

  • Guojuan Li,
  • Chunying Fan,
  • Guo Cheng,
  • Wanhua Wu and
  • Cheng Yang

Beilstein J. Org. Chem. 2019, 15, 1601–1611, doi:10.3762/bjoc.15.164

Graphical Abstract
  • TMS as an internal standard. Due to the poor solubility, NMR spectra of P5A-DPA were recorded at room temperature on a Bruker AMX-600 spectrometer (operating at 600 MHz for 1H NMR and 151 MHz 13C NMR) in CDCl3. High-resolution mass spectra (HRMS) were measured using a Waters-Q-TOF Premiers (ESI
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP)

  • Małgorzata Urbańczyk,
  • Michał Jewgiński,
  • Joanna Krzciuk-Gula,
  • Jerzy Góra,
  • Rafał Latajka and
  • Norbert Sewald

Beilstein J. Org. Chem. 2019, 15, 1581–1591, doi:10.3762/bjoc.15.162

Graphical Abstract
  • purified by preparative RP-HPLC and identified by Accurate Mass Measurements performed on Agilent Techn. 6220 ToF LCMS; ionisation method: ESI. Ac-ʟ-Ala-ʟ-Thr(α-ᴅ-GalNAc)-ʟ-Ala-NH-Me (1) (27.7 mg, 79.0%); C21H37N5O10; exact mass: 519.25 g/mol; ESIMS: [M + H]+ 520.2618; 1H NMR (600 MHz, DMSO-d6) δ [ppm
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

An azobenzene container showing a definite folding – synthesis and structural investigation

  • Abdulselam Adam,
  • Saber Mehrparvar and
  • Gebhard Haberhauer

Beilstein J. Org. Chem. 2019, 15, 1534–1544, doi:10.3762/bjoc.15.156

Graphical Abstract
  • , 1458, 1188, 1110, 761, 715 cm−1; UV–vis (CH3CN) λmax (log ε): 202 (4.69), 229 (4.69), 328 (4.50), 445 nm (2.99); HRMS (ESI–TOF) m/z: [M + H]+ calcd for C92H115N22O10, 1687.9161; found, 1687.9103; [M + Na]+ calcd for C92H114N22O10Na, 1709.8980; found, 1709.8929. Calculations. All calculations were
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2019

2,3-Dibutoxynaphthalene-based tetralactam macrocycles for recognizing precious metal chloride complexes

  • Li-Li Wang,
  • Yi-Kuan Tu,
  • Huan Yao and
  • Wei Jiang

Beilstein J. Org. Chem. 2019, 15, 1460–1467, doi:10.3762/bjoc.15.146

Graphical Abstract
  • isolated with yields of 22% and 19%, respectively. Electrospray ionization (ESI) mass spectra support the isolated products to be the [2 + 2] macrocycles (see Supporting Information File 1). As shown in Figure 1, the 1H NMR spectra are consistent with high-symmetry structures. There are slight differences
  • supported by the ESI mass spectrum (Figure 4). The peak at m/z 1257.3140 was assigned to AuCl4−@1. The experimental isotopic pattern is consistent with the calculated one. In addition, precious metal chloride complexes PdCl42− and PtCl42− with TBA+ as counter ion can be bound by 1 as well (Figures S3 and S4
  • values for (TBA)2[PtCl4] and (TBA)2[PdCl4] were 189 ± 36 M−1 and 198 ± 15 M−1, respectively. It should be noted that PdCl42− is relatively labile at high concentrations and is in equilibrium with the palladate dimer (Pd2Cl62−) and chloride ions [32][39]. The formation of Pd2Cl62− was supported by an ESI
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2019

Fluorine-containing substituents: metabolism of the α,α-difluoroethyl thioether motif

  • Andrea Rodil,
  • Alexandra M. Z. Slawin,
  • Nawaf Al-Maharik,
  • Ren Tomita and
  • David O’Hagan

Beilstein J. Org. Chem. 2019, 15, 1441–1447, doi:10.3762/bjoc.15.144

Graphical Abstract
  • , J = 8.6 Hz, 2H), 3.91 (s, 3H), 2.02 (t, J = 18.3 Hz, 3H); 19F NMR (471 MHz, chloroform-d) δF −97.3 (s); 13C NMR (126 MHz, chloroform-d) δC 165.2, 133.1, 122.9, 114.7, 55.8, 16.6 (t, J = 22.2 Hz); HMRS (ESI) m/z: [M + H]+ calcd for C9H11F2O3S, 236.0310; found, 236.0390; [M + Na]+ calcd, 259.0211
  • ), 135.1 (s, C-Ar), 133.6 (t, J = 218.8 Hz, CF2), 129.3 (s, C-Ar), 128.8 (s, C-Ar), 128.5 (s, C-Ar), 128.1 (s, C-Ar), 127.5 (s, C-Ar), 126.8 (s, C-Ar), 121.0 (s, C-Ar), 111.7 (C-Ar, visible in HMBC), 16.5 (t, J = 22.1 Hz, CF2CH3); HRMS (ESI+) m/z: [M + H]+ calcd for C12H11OF2S, 241.0420; found, 241.0491
  • accurate mass spectrometry. 19F{1H} and 13C{1H}) NMR spectra were recorded on Bruker Avance III 500 or Bruker Avance III 500 HD spectrometers (500 MHz 1H, 476 MHz 19F, 126 MHz 13C). High-resolution mass spectrometry was acquired using electrospray ionisation (ESI), on a ThermoFisher Excalibur Orbitrap
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

Selenophene-containing heterotriacenes by a C–Se coupling/cyclization reaction

  • Pierre-Olivier Schwartz,
  • Sebastian Förtsch,
  • Astrid Vogt,
  • Elena Mena-Osteritz and
  • Peter Bäuerle

Beilstein J. Org. Chem. 2019, 15, 1379–1393, doi:10.3762/bjoc.15.138

Graphical Abstract
  • interfaced to an Apollo II Dual ESI/MALDI source. Single crystals were analysed on a Bruker SMART APEX-II CCD diffractometer (λ(Mo Kα)-radiation, graphite monochromator, ω and 4 scan mode) and corrected for absorption using the SADABS program [53]. The structures were solved by direct methods and refined by
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019
Other Beilstein-Institut Open Science Activities