Search results

Search for "TEMPO" in Full Text gives 176 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis of the C8’-epimeric thymine pyranosyl amino acid core of amipurimycin

  • Pramod R. Markad,
  • Navanath Kumbhar and
  • Dilip D. Dhavale

Beilstein J. Org. Chem. 2016, 12, 1765–1771, doi:10.3762/bjoc.12.165

Graphical Abstract
  • generated stereocenters, we continued our synthesis with anhydrosugar 12 as its configurations are matching with that of target compound. Thus, TEMPO-mediated selective oxidation of the primary hydroxy group in 12 to acid functionality followed by esterification using diazomethane afforded azido methyl
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2016

Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

  • Carl J. Mallia,
  • Paul M. Burton,
  • Alexander M. R. Smith,
  • Gary C. Walter and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2016, 12, 1598–1607, doi:10.3762/bjoc.12.156

Graphical Abstract
  • nucleophilic partner, moderate to good yields were obtained (56–71% yields, 9 examples). More recently the Tranmer group reported the use of a copper-filled column as a catalyst with TEMPO as the co-oxidant in acetonitrile (acetic acid additive) with moderate to good yields of the coupled products being
  • potentially an improvement on the use of stiochiometric copper(II) acetate in continuous flow, the use of TEMPO or tert-butyl peroxybenzoate as a co-oxidant introduces waste. Employing oxygen gas as an oxidant is preferred as it is cheap, renewable and environmentally benign. We therefore set out to develop a
  • protocols it is clear that the use of sub-stoichiometric amounts of the copper catalysts presents an advantage over the stoichiometric amount used in the original flow studies [13]. Additionally, the use of oxygen as the oxidant offers improved atom economy over the use of systems such as TEMPO and tert
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2016

Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates

  • Souad Kachbi-Khelfallah,
  • Maelle Monteil,
  • Margery Cortes-Clerget,
  • Evelyne Migianu-Griffoni,
  • Jean-Luc Pirat,
  • Olivier Gager,
  • Julia Deschamp and
  • Marc Lecouvey

Beilstein J. Org. Chem. 2016, 12, 1366–1371, doi:10.3762/bjoc.12.130

Graphical Abstract
  • one step has been performed. Thus, tested oxidants were the Jones reagent [22], potassium permanganate [23], with catalytic o-iodoxybenzoic acid (IBX) in oxone [24] and catalytic 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) with bis(acetoxy)iodobenzene (BAIB) [25]. The first two conditions led to a
  • PEG chain cleavage and the recovery of benzoic acid from alcohol 2. Besides, the mixture IBX/oxone gave the expected product inseparable of IBX byproducts. Only oxidation using TEMPO and BAIB furnished the pure corresponding carboxylic acid. Nevertheless, the low obtained yields encouraged us to test
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2016

Cascade alkylarylation of substituted N-allylbenzamides for the construction of dihydroisoquinolin-1(2H)-ones and isoquinoline-1,3(2H,4H)-diones

  • Ping Qian,
  • Bingnan Du,
  • Wei Jiao,
  • Haibo Mei,
  • Jianlin Han and
  • Yi Pan

Beilstein J. Org. Chem. 2016, 12, 301–308, doi:10.3762/bjoc.12.32

Graphical Abstract
  • is consistent with our previous report [19], which discloses that the alkylation of the C–C double bond initiates the radical process. Furthermore, a radical-trapping reagent, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), was added to the reaction, and the reaction was completely inhibited, affording
  • -unprotected substrate 8a; b) reaction with the addition of radical-trapping reagent TEMPO; c) KIE study. Proposed mechanism. Optimization of typical reaction conditions.a Supporting Information Supporting Information File 254: Experimental details and spectral data. Acknowledgements We gratefully
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

  • Brett N. Hemric and
  • Qiu Wang

Beilstein J. Org. Chem. 2016, 12, 22–28, doi:10.3762/bjoc.12.4

Graphical Abstract
  • oxygen sources, such as TEMPO and acetate. Herein, we envisioned that a copper-catalyzed intermolecular olefin oxyamination could be achieved using O-acylhydroxylamines as an electrophilic amino precursor [35][36][37][38][39] and carboxylic acids as a nucleophilic oxygen source (Scheme 1E). The proposed
PDF
Album
Supp Info
Letter
Published 07 Jan 2016

Copper-catalyzed aminooxygenation of styrenes with N-fluorobenzenesulfonimide and N-hydroxyphthalimide derivatives

  • Yan Li,
  • Xue Zhou,
  • Guangfan Zheng and
  • Qian Zhang

Beilstein J. Org. Chem. 2015, 11, 2721–2726, doi:10.3762/bjoc.11.293

Graphical Abstract
  • -tetramethylpiperidine-N-oxyl (TEMPO) [36]. NFSI is a very interesting reagent. Besides classic electrophilic fluorination reagent [37], it has been used not only as fluoride-atom transfer reagent [38][39][40] but also as nucleophilic/radical amination reagent [41]. We are highly interested in the multiple reaction
PDF
Album
Supp Info
Letter
Published 24 Dec 2015

Recent developments in copper-catalyzed radical alkylations of electron-rich π-systems

  • Kirk W. Shimkin and
  • Donald A. Watson

Beilstein J. Org. Chem. 2015, 11, 2278–2288, doi:10.3762/bjoc.11.248

Graphical Abstract
  • such as TEMPO. Radical clock experiments provided ring-opened products, suggesting the presence of intermediate radicals. We propose that this reaction proceeds via a thermal redox process. We hypothesize that the alkyl radical is formed by transfer of a bromine atom from the alkyl halide to the copper
PDF
Album
Review
Published 23 Nov 2015

Recent advances in copper-catalyzed C–H bond amidation

  • Jie-Ping Wan and
  • Yanfeng Jing

Beilstein J. Org. Chem. 2015, 11, 2209–2222, doi:10.3762/bjoc.11.240

Graphical Abstract
  • the reaction in the synthesis of indoles was later achieved by mean of ligand-free condition via the co-catalysis of Cu(eh)2 (copper(II) 2-ethylhexanoate) and TEMPO under oxygen atmosphere [68]. C(sp)–H bond amidation The C(sp)–H bond in terminal alkynes is more acidic than equivalent alkane and
PDF
Album
Review
Published 17 Nov 2015

Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles

  • Wen Ding,
  • Shaoyu Mai and
  • Qiuling Song

Beilstein J. Org. Chem. 2015, 11, 2158–2165, doi:10.3762/bjoc.11.233

Graphical Abstract
  • carboxylic acids. The reactions were totally inhibited by radical scavengers 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and BHT (2,6-di-tert-butyl-4-methylphenol), suggesting that a radical pathway might be involved in these transformations (Scheme 7). A careful look at the literature reveals that Cu(II
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2015

C–H bond halogenation catalyzed or mediated by copper: an overview

  • Wenyan Hao and
  • Yunyun Liu

Beilstein J. Org. Chem. 2015, 11, 2132–2144, doi:10.3762/bjoc.11.230

Graphical Abstract
  • ). Control experiments in the presence of TEMPO suggested that the reaction might proceed via a C-centered free radical provided by SET between the quinoline substrate and the cupric salt. In recent years, the formation of C–F chemical bonds received global research interest owing to the particular functions
PDF
Album
Review
Published 09 Nov 2015

Aerobic addition of secondary phosphine oxides to vinyl sulfides: a shortcut to 1-hydroxy-2-(organosulfanyl)ethyl(diorganyl)phosphine oxides

  • Svetlana F. Malysheva,
  • Alexander V. Artem’ev,
  • Nina K. Gusarova,
  • Nataliya A. Belogorlova,
  • Alexander I. Albanov,
  • C. W. Liu and
  • Boris A. Trofimov

Beilstein J. Org. Chem. 2015, 11, 1985–1990, doi:10.3762/bjoc.11.214

Graphical Abstract
  • the presence of oxygen. In the other experiment, when TEMPO, a widely used radical scavenger, was added (10 mol %) into the reaction system 1a/2c, the product 3d was also formed, however, a longer reaction time was required for complete conversion of secondary phosphine oxide 1a as compared to TEMPO
  • -free conditions (15 vs 11 h). Meanwhile, this observation does not completely exclude a radical mechanism since the cross-coupling reactions between TEMPO and radical intermediates can be reversible [31]. In future, we intend to check various radical scavengers (other than TEMPO) in order to better
PDF
Album
Supp Info
Letter
Published 23 Oct 2015

Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds

  • Gerold Heuger and
  • Richard Göttlich

Beilstein J. Org. Chem. 2015, 11, 1226–1234, doi:10.3762/bjoc.11.136

Graphical Abstract
  • ). Another strong argument for a mechanism via radicals is the complete surpression of the reaction of 2a with decene in the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) as a radical trap, which we observed. In a last experiment we added 2a to 5-hexen-1-ol, a substrate that easily reacts with
PDF
Album
Full Research Paper
Published 21 Jul 2015

Radical-mediated dehydrative preparation of cyclic imides using (NH4)2S2O8–DMSO: application to the synthesis of vernakalant

  • Dnyaneshwar N. Garad,
  • Subhash D. Tanpure and
  • Santosh B. Mhaske

Beilstein J. Org. Chem. 2015, 11, 1008–1016, doi:10.3762/bjoc.11.113

Graphical Abstract
  • revealed that the transformation developed herein may be proceeding via a radical pathway. The reaction was conducted with the substrate 2 using our standard protocol in the presence of TEMPO (Figure 2), wherein complete inhibition of the reaction was observed, thus indicating involvement of radical
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides

  • Zhongwei Liang,
  • Song Xu,
  • Wenyan Tian and
  • Ronghua Zhang

Beilstein J. Org. Chem. 2015, 11, 425–430, doi:10.3762/bjoc.11.48

Graphical Abstract
  • the presence of TEMPO. Conclusion In conclusion, we report an efficient metal-free method for the synthesis of corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using molecular oxygen as oxidant and Eosin Y as catalyst under the irradiation of visible light. The protocol is
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2015

Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

  • Bichlien H. Nguyen,
  • Robert J. Perkins,
  • Jake A. Smith and
  • Kevin D. Moeller

Beilstein J. Org. Chem. 2015, 11, 280–287, doi:10.3762/bjoc.11.32

Graphical Abstract
  • electrochemical setup. The same electrochemical solar cell developed for the direct oxidation experiments could be utilized to conduct indirect electrolysis. In the second oxidation illustrated, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) was recycled at the anode [20]. The bulky oxidant was used to selectively
PDF
Album
Commentary
Published 23 Feb 2015

TEMPO-derived spin labels linked to the nucleobases adenine and cytosine for probing local structural perturbations in DNA by EPR spectroscopy

  • Dnyaneshwar B. Gophane and
  • Snorri Th. Sigurdsson

Beilstein J. Org. Chem. 2015, 11, 219–227, doi:10.3762/bjoc.11.24

Graphical Abstract
  • deoxyoligonucleotides using the phosphoramidite method. All three nucleosides contain 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) connected to the exocyclic amino group; TA directly and UA as well as UC through a urea linkage. TA and UC showed a minor destabilization of a DNA duplex, as registered by a small decrease
  • surroundings of the label, which in turn is reflected in the shape of the EPR spectra. We have previously used the spin label TC [69], containing a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) moiety conjugated to the exocyclic amino group of C (Figure 1A), to identify the base to which it is paired with in
  • surroundings of a nucleic acid groove can be detected with spin labels by EPR spectroscopy. Here, we describe the use of an analogous derivative of A, namely TA, in which a TEMPO moiety is conjugated to the exocyclic amino group of 2´-deoxyadenosine (Figure 1B), to study local perturbations for a purine base
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2015

Cross-dehydrogenative coupling for the intermolecular C–O bond formation

  • Igor B. Krylov,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2015, 11, 92–146, doi:10.3762/bjoc.11.13

Graphical Abstract
  • trapped by the stable radical TEMPO, and trapping product 147 was obtained in an almost quantitative yield (Scheme 29). The reaction of aldehydes 148a with ethers 149 in the presence of Bu4NI and t-BuOOH generated corresponding α-acyloxy ethers 150. Reactions between (hetero)aromatic aldehydes or
  • TEMPO and t-BuOCl, to yield anhydride 173. 2.5 Oxidative systems based on transition metal salts and peroxides Esters 177 were synthesized by the oxidative C–O coupling of aldehydes 175 with alkylarenes 176 using the Cu(OAc)2/t-BuOOH system (Scheme 36) [151]. The coupling was performed with toluene
PDF
Album
Review
Published 20 Jan 2015

Conjugates of methylated cyclodextrin derivatives and hydroxyethyl starch (HES): Synthesis, cytotoxicity and inclusion of anaesthetic actives

  • Lisa Markenstein,
  • Antje Appelt-Menzel,
  • Marco Metzger and
  • Gerhard Wenz

Beilstein J. Org. Chem. 2014, 10, 3087–3096, doi:10.3762/bjoc.10.325

Graphical Abstract
  • shown in Figure 2b. The HES derivative with DSHES(propg) = 0.65, 2, was selected for the further coupling to azido-CD derivatives. Also a hydroxyethyl starch, where the CH2OH groups had been partially oxidized by TEMPO to carboxylate groups [45][46], was functionalized by reaction with glycidyl
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2014

Come-back of phenanthridine and phenanthridinium derivatives in the 21st century

  • Lidija-Marija Tumir,
  • Marijana Radić Stojković and
  • Ivo Piantanida

Beilstein J. Org. Chem. 2014, 10, 2930–2954, doi:10.3762/bjoc.10.312

Graphical Abstract
  • phenanthridines in excellent yields (>92%). The radical inhibitor 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) was applied to stop the transformation by a single electron transfer process. Intriguing combination of irradiation techniques (combined microwave-assisted and photochemical) offered a new route toward
PDF
Album
Review
Published 10 Dec 2014

Recent advances in the electrochemical construction of heterocycles

  • Robert Francke

Beilstein J. Org. Chem. 2014, 10, 2858–2873, doi:10.3762/bjoc.10.303

Graphical Abstract
  • of 2,3-dihydrobenzofuran structures 43 via double-mediatory Wacker-type cyclization of alkenyl phenols 42 [61]. Pd(OAc)2 was used to catalyze the cyclization while TEMPO served as redox mediator for the electrochemical regeneration of the catalytically active Pd(II) species. In contrast to
PDF
Album
Review
Published 03 Dec 2014

Visible light photoredox-catalyzed deoxygenation of alcohols

  • Daniel Rackl,
  • Viktor Kais,
  • Peter Kreitmeier and
  • Oliver Reiser

Beilstein J. Org. Chem. 2014, 10, 2157–2165, doi:10.3762/bjoc.10.223

Graphical Abstract
  • TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) gave, beside reduction product 12, adduct 13 which suggests that the methyl group originates from a sequential reduction of the C–F bonds through a radical pathway. In addition a test for fluoride with [Fe(SCN)(H2O)5]2+ in an evaporated aliquot of the
PDF
Album
Supp Info
Video
Full Research Paper
Published 10 Sep 2014

Amino acid motifs in natural products: synthesis of O-acylated derivatives of (2S,3S)-3-hydroxyleucine

  • Oliver Ries,
  • Martin Büschleb,
  • Markus Granitzka,
  • Dietmar Stalke and
  • Christian Ducho

Beilstein J. Org. Chem. 2014, 10, 1135–1142, doi:10.3762/bjoc.10.113

Graphical Abstract
  • esterification of the 3-hydroxy group with acryloyl chloride (35), thus furnishing acrylate 36 in 94% yield (Scheme 6). After acidic cleavage of the silyl ether in 93% yield [40], the resultant primary alcohol 37 was oxidized using catalytic amounts of TEMPO and trichlorocyanuric acid (TCCA) as stoichiometric
PDF
Album
Supp Info
Full Research Paper
Published 16 May 2014

Silver and gold-catalyzed multicomponent reactions

  • Giorgio Abbiati and
  • Elisabetta Rossi

Beilstein J. Org. Chem. 2014, 10, 481–513, doi:10.3762/bjoc.10.46

Graphical Abstract
  • lifetimes of gold(III) chloride catalysts in A3-MCRs by the addition of inexpensive and commercially available reagents such as CuCl2 and TEMPO [36]. The proposed rationale seems simple and elegant: the reduction of gold(I) (real active species) to colloidal Au(0) was responsible for the deactivation of the
  • catalyst. CuCl2 was able to reoxidize Au(0) to Au(I) which increased the number of turnovers (up to 33 cycles). The Cu(I) was oxidized back to Cu(II) by TEMPO. Also O2 had a role in this cycle, probably as a reoxidizing agent for TEMPO. Another challenge in an A3-coupling strategy is its transformation in
PDF
Album
Review
Published 26 Feb 2014

Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products

  • Alexander O. Terent'ev,
  • Dmitry A. Borisov,
  • Vera A. Vil’ and
  • Valery M. Dembitsky

Beilstein J. Org. Chem. 2014, 10, 34–114, doi:10.3762/bjoc.10.6

Graphical Abstract
PDF
Album
Review
Published 08 Jan 2014

Garner’s aldehyde as a versatile intermediate in the synthesis of enantiopure natural products

  • Mikko Passiniemi and
  • Ari M.P. Koskinen

Beilstein J. Org. Chem. 2013, 9, 2641–2659, doi:10.3762/bjoc.9.300

Graphical Abstract
  • reduction can be used. The ester can be reduced to alcohol 6 (e.g., with NaBH4/LiCl) and then oxidized to 1 with non-basic methods (e.g., IBX/DMP [30] or TEMPO/NaOCl [31] to name a few), which will not epimerize the α-center. For our synthesis of 1, we adopted a slightly modified sequence [32]. L-Serine (2
PDF
Album
Review
Published 26 Nov 2013
Other Beilstein-Institut Open Science Activities