Search results

Search for "oxygen" in Full Text gives 1262 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Graphical Abstract
  • transferred from the hydroxy group of R[4]A to the amine molecule, forming a hydrogen bond between the proton of the positively charged amino group and the oxygen anion in the R[4]A molecule (ArO−···H+NHR2). For sec-amine molecules such as morpholine and N-methylpiperazine, an “out” complex is formed by
  • and the pyrrolidine molecule are marked in green, 1.478 Å in DMSO and 1.565 Å in CHCl3. Additionally, the lengths of hydrogen bonds between the protons of the hydroxy groups and the oxygen atoms in the upper ring of R[4]A are marked in purple. It is worth noting the significantly shorter length of the
  • hydrogen bond between the oxygen anion of the hydroxy group (which also forms a hydrogen bond with the amine molecule) and the adjacent hydroxy group in DMSO in the R[4]A (1.505 Å) molecule than the remaining intramolecular hydrogen bonds. In CHCl3, both the type and length of the hydrogen bond undergo
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2023

Synthesis and biological evaluation of Argemone mexicana-inspired antimicrobials

  • Jessica Villegas,
  • Bryce C. Ball,
  • Katelyn M. Shouse,
  • Caleb W. VanArragon,
  • Ashley N. Wasserman,
  • Hannah E. Bhakta,
  • Allen G. Oliver,
  • Danielle A. Orozco-Nunnelly and
  • Jeffrey M. Pruet

Beilstein J. Org. Chem. 2023, 19, 1511–1524, doi:10.3762/bjoc.19.108

Graphical Abstract
  • ) protein [16][17], as well as perturbing carbohydrate metabolism to generate reactive oxygen species that damage the DNA [18], as modes of action for berberine’s antibacterial effects. The antitumor properties of berberine have been attributed to DNA binding, and in particular regulating the activity of
  • B2 showed one less aromatic proton than expected and mass spectrometry revealed the presence of an extra oxygen. It was initially thought this unexpected oxidation had occurred at position-8, leading to an 8-oxoberberine variant. However, oxidation at position-8 was questionable (qualitatively) as 8
  • these optimized conditions still resulted in exclusive isolation of B2 with no evidence of the product lacking the oxygen at position-13. Subsequent variants B7 and B8 were synthesized as the expected berberine derivatives, without formation of the oxidation byproduct. Of this initial set of berberine
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2023

Cyclization of 1-aryl-4,4,4-trichlorobut-2-en-1-ones into 3-trichloromethylindan-1-ones in triflic acid

  • Vladislav A. Sokolov,
  • Andrei A. Golushko,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2023, 19, 1460–1470, doi:10.3762/bjoc.19.105

Graphical Abstract
  • -enones) undergo intramolecular transformation into 3-trichloromethylindan-1-ones (CCl3-indanones) in Brønsted superacid CF3SO3H (triflic acid, TfOH) at 80 °C within 2–10 h in yields up to 92%. Protonation of the carbonyl oxygen of the starting CCl3-enones by TfOH affords the key reactive intermediates
  • mechanisms for the cyclization of compounds 1 and 2 into indanones 3 in TfOH (Scheme 7). Protonation of the carbonyl oxygen of enone 2 gives rise to cation B which is followed by cyclization into indanone 3 through mesomeric form B'. The hydroxy ketone 1 is protonated at the oxygen atoms leading to cation A
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • enolate and a new R• that propagates the radical chain (Scheme 1). Initiation occurs upon oxidation of the dialkylzinc reagent by oxygen. The feasibility of such 1,4-addition reactions is fully reliant on the ease of the intermediate enoxyl radical to undergo alkylzinc-group transfer. Secondary α-carbonyl
  • coordinated to the zinc atom: this offers a gain in enthalpy associated to the formation of zinc enolates stabilized by chelation and increases the spin density delocalized at the oxygen atom involved in the chelate. Note that the reported 1,4-additions of dialkylzinc reagents to alkylidenemalonates could
  • only they demonstrate that the oxygen-promoted 1,4-addition of α-(aminomethyl)acrylates with free N–H bonds is a productive process, but also that the tert-butanesulfinyl moiety is well tolerated and that 1,4-stereoinduction can be achieved. Hence, in order to improve the levels of diastereoselectivity
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • ) reported by Arduengo et al. [3], turned out to be a watershed in this regard as it initiated intense research activity in this field. Compound 6 is stable in the absence of oxygen and air. The first air-stable carbene, namely 1,3-dimesityl-4,5-dichloroimidazol-2-ylidene (7b) [4] was obtained from the
  • -naphthol moiety 193 afforded the highest yield and enantioselectivity. On protecting the hydroxy group in the ligand as methyl ether, the reaction efficiency decreased remarkably. However, on using NHC ligands without oxygen atom, such as analogues of 193, IMes, and SIMes, no conversion occurred. 2.8 C(sp2
PDF
Album
Review
Published 20 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • . The replacement of the oxygen atom located in sn-1 position by a methylamino group corresponds to a compound known as BN52211 (30.6, Figure 30). This compound was used in many studies for its antitumor cytotoxicity [136] or its immunologic properties [137]. To the best of our knowledge, the synthesis
  • the oxygen atom at the sn-1 position of the glycerol by a methylene unit (sn-1-desoxy glycerol derivatives) was reported by Bonjouklian et al. in 1986 [139]. These authors reported the synthesis of edelfosine analogues with saturated, unsaturated or polyunsaturated lipid chains. For the analogues with
PDF
Album
Review
Published 08 Sep 2023

Organic thermally activated delayed fluorescence material with strained benzoguanidine donor

  • Alexander C. Brannan,
  • Elvie F. P. Beaumont,
  • Nguyen Le Phuoc,
  • George F. S. Whitehead,
  • Mikko Linnolahti and
  • Alexander S. Romanov

Beilstein J. Org. Chem. 2023, 19, 1289–1298, doi:10.3762/bjoc.19.95

Graphical Abstract
  • aerated MCH solution. The reduction in quantum yield on exposure to oxygen is due to quenching of the triplet excited states indicating a TADF luminescence mechanism. PLQY in Zeonex films is 39% in air, which is lower than the PLQY of 87% reported for 4CzIPN [17]. The two-component excited state lifetime
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • drug and natural compounds containing functionalized ether α-C(sp3)–H bonds CDC reactions can be applied. This review mainly focuses on the CDC reactions of ether oxygen α-C(sp3)–H bonds via non-noble metal-catalysis (Scheme 1d). Review Non-noble metal-catalyzed CDC reactions involving ether α-C(sp3)–H
  • bonds The possible mechanism of the CDC reaction involving ether α-C(sp3)–H bonds mainly follows the two pathways outlined in Scheme 2. Route a: First, the C(sp3)–H bond at the α-position of the oxygen atom undergoes a single-electron transfer under the combined action of the transition metal and an
  • oxidant to generate an oxygen-radical cationic intermediate, which undergoes abstraction of a hydrogen radical (or loses a proton first, followed by an electron) to afford an oxonium ion intermediate. Finally, the oxonium ion is attacked by various nucleophiles to obtain the target functionalized product
PDF
Album
Review
Published 06 Sep 2023

Unravelling a trichloroacetic acid-catalyzed cascade access to benzo[f]chromeno[2,3-h]quinoxalinoporphyrins

  • Chandra Sekhar Tekuri,
  • Pargat Singh and
  • Mahendra Nath

Beilstein J. Org. Chem. 2023, 19, 1216–1224, doi:10.3762/bjoc.19.89

Graphical Abstract
  • ; multicomponent synthesis; one-pot reaction; trichloroacetic acid; Introduction π-Conjugated porphyrin macrocycles are known for their applications in numerous areas ranging from oxygen transport, photosynthesis, catalysis and medicine [1][2][3]. In the past several years, diverse organic scaffolds have been
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2023
Graphical Abstract
  • material is needed to couple the carbon dioxide reduction system to water splitting. That said, to successfully reduce a molecule there must always be a sacrificial electron donor or stoichiometric reductant. In photosynthesis the sacrificial donor is water, and the byproduct is oxygen. Sacrificial
  • photocatalyst which re-reduced DcMFc and evolved oxygen. The same reaction scheme was used but in a modified H-cell (Figure 2B) [35]. Both catalysts were confined at the ITIES in two separate chambers and the redox mediator diffused between the two cells via the organic phase. The protons for hydrogen evolution
  • to be stored in oxygen-free conditions to prevent re-oxidation. A major advantage of ex-situ or decoupled sacrificial electron donor recycling is that, like decoupled water splitting, the gaseous products can be evolved separately preventing explosive mixtures. However, if the sacrificial donor needs
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • pathway was operative, producing halogen-bonded adducts 28/28’ which could cyclize on the acylium at either carbon or oxygen, to eventually produce 24 and 25 after reductive elimination of iodobenzene (Figure 7, bottom). Based on these initial results and their corresponding mechanistic proposals, iodine
  • electron-rich, deactivated arene. Improved results were further realized for 61d, in which the oxygen was one atom removed from the arene, which gave 62d in a 90% RCC and an 82% RCY. These results offered important insight into the hierarchy of fluorination selectivity and pointed directly to secondary
PDF
Album
Review
Published 07 Aug 2023

Two new lanostanoid glycosides isolated from a Kenyan polypore Fomitopsis carnea

  • Winnie Chemutai Sum,
  • Sherif S. Ebada,
  • Didsanutda Gonkhom,
  • Cony Decock,
  • Rémy Bertrand Teponno,
  • Josphat Clement Matasyoh and
  • Marc Stadler

Beilstein J. Org. Chem. 2023, 19, 1161–1169, doi:10.3762/bjoc.19.84

Graphical Abstract
  • additional oxygen atom compared to compound 1. The 1H, 13C NMR, and HSQC spectral data of compound 2 (Table 1) revealed a close similarity to forpinioside B (1) apart from the presence of an additional aliphatic methine proton at δH 4.02 (ddd, J = 12.3, 4.3, 2.9 Hz; δC 66.5) which exhibited an obvious spin
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • additional reaction pathway is proposed in which the incorporated oxygen on the heteroatoms originates from water. Furthermore, the addition of certain additives enhances productivity by affecting kinetics. The industrial potential is demonstrated by conveniently transferring the batch protocol to continuous
  • flow using the HANU flow reactor, indicating scalability and improving safety. Keywords: catalyst-free; flow chemistry; oxygen; photochemistry; sustainable oxidation; Introduction Oxidation reactions are widely used in the chemical industry, but are often problematic due to challenges with
  • selectivity and safety. Traditional oxidants, such as Oxone, CrO3, NaIO4, or KMnO4, produce significant amounts of toxic waste, exacerbating these issues (Scheme 1A) [1]. As environmental concerns and economic factors increasingly affect chemical processes, hydrogen peroxide and oxygen (or air) are becoming
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

The effect of dark states on the intersystem crossing and thermally activated delayed fluorescence of naphthalimide-phenothiazine dyads

  • Liyuan Cao,
  • Xi Liu,
  • Xue Zhang,
  • Jianzhang Zhao,
  • Fabiao Yu and
  • Yan Wan

Beilstein J. Org. Chem. 2023, 19, 1028–1046, doi:10.3762/bjoc.19.79

Graphical Abstract
  • fluorescence under nitrogen atmosphere and a substantial quenching under air or oxygen atmosphere [22], the fluorescence spectra of the dyads containing native PTZ unit under different atmospheres were studied (Figure 3a–d and Figure S32a in Supporting Information File 1). The results show that the
  • Supporting Information File 1), the fluorescence intensity is less dependent on the atmosphere. Moreover, we suggest that the reduced luminescence of the oxidized molecules in air may be caused by the quenching effect of oxygen to the S1 state. According to this experimental phenomenon, we preliminarily
  • possible relaxation pathway, because the orthogonal geometry of the dyads is beneficial for SOCT-ISC. Previously we have shown that SOCT-ISC occurs for the analogue of NI-PTZ-C5 [39]. In order to study the ISC efficiency of the dyads, we measured the singlet oxygen quantum yield (ΦΔ) of the dyads in
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2023
Graphical Abstract
  • heteroarene and amide oxygen of 45 forcing the heteroarene to approach from the Si-face of the imine moiety predominantly (see transition state 48) achieving high enantiocontrol for both heterocycles (Scheme 13) [38]. The carbocyclic ring in indoles is less reactive than the heterocyclic ring and hence the
  • carbonyl oxygen of 69 in the ternary complex, thus bringing more rigidity in the three dimensional transition state (Scheme 18) [46]. In 2021, Chen and co-workers documented a chiral phosphoric acid P17-catalyzed aza-Friedel–Crafts process between racemic 2,3-dihydroisoxazol-3-ol derivatives 76 and
  • a hydroxyquinoline-substituted aza-quaternary stereocenter in the 3 position. Most of the examples in this report involved 6-hydroxyquinoline as nucleophile whereas two examples each were presented with 5- and 7-hydroxyquinolines, respectively. Both the imine nitrogen and the carbonyl oxygen of the
PDF
Album
Review
Published 28 Jun 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • the ability of MgI2 etherate to act as a Lewis acid activator. The iodine counterion is coordinated to the Lewis basic oxygen atom of the acetal group to give the more Lewis acidic cataonic Mg-coordinated intermediate A. Intermediate A upon nucleophilic reaction with amines 20 yields B, which upon
PDF
Album
Review
Published 27 Jun 2023

First synthesis of acylated nitrocyclopropanes

  • Kento Iwai,
  • Rikiya Kamidate,
  • Khimiya Wada,
  • Haruyasu Asahara and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2023, 19, 892–900, doi:10.3762/bjoc.19.67

Graphical Abstract
  • , but a dihydrofuran, so the cyclopropane 1b’ reported in the literature [12][13][19] is presumably incorrect [22]. In the cases of donor–acceptor cyclopropanes possessing an electron-donating group such as an alkoxy or amino group, ring expansion caused by an intramolecular attack of nitro oxygen
  • proceeded, to produce furan 13 with a 46% yield (Scheme 6). The coordination of two carbonyl groups to the tin species facilitated the ring opening of the cyclopropane ring to afford betaine [7], then the oxygen atom of the enolate attacked the benzyl cation to construct a five-membered ring. The subsequent
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2023

Light-responsive rotaxane-based materials: inducing motion in the solid state

  • Adrian Saura-Sanmartin

Beilstein J. Org. Chem. 2023, 19, 873–880, doi:10.3762/bjoc.19.64

Graphical Abstract
  • -crystal X-ray structure of rotaxane 1a (R1 = Me, R2 = R3 = H) showing two interlocked molecules of the crystalline array [44]. Colour key of the solid structure: light blue = carbon atoms; purple = nitrogen atoms; red = oxygen atoms; and orange = iron atoms. Hydrogen atoms are omitted for clarity. (a
  • the solid structure of UMUMOF-(E)-3 showing a rhombohedral metallogrid; and (c) cartoon representation of the operation mode of UMUMOF-(E)-3 as a molecular nanodispenser [62]. Colour key of the solid structure: light blue = carbon atoms; purple = nitrogen atoms; red = oxygen atoms; and grey = copper
  • array [63]. Colour key of the solid structure: light blue = carbon atoms; purple = nitrogen atoms; red = oxygen atoms; and magenta = uranium atoms. Acknowledgements All figures included in this article are original and have been redrawn based on the content of the referenced research articles by using
PDF
Album
Perspective
Published 14 Jun 2023

A fluorescent probe for detection of Hg2+ ions constructed by tetramethyl cucurbit[6]uril and 1,2-bis(4-pyridyl)ethene

  • Xiaoqian Chen,
  • Naqin Yang,
  • Yue Ma,
  • Xinan Yang and
  • Peihua Ma

Beilstein J. Org. Chem. 2023, 19, 864–872, doi:10.3762/bjoc.19.63

Graphical Abstract
  • outside the cavity, forming a 1:1 inclusion complex with TMeQ[6]. Figure 4b shows that the hydrogen atoms on the G molecule form C–H30···O1, C–H30···O2 and C–H31···O4 hydrogen bonds with the carbonyl oxygen and carbon atoms on TMeQ[6], and the bond distances are 2.163, 2.707 and 2.228 Å, respectively. In
  • Figure 4c, the hydrogen atoms of G and the carbonyl oxygen of TMeQ[6] form C–H22···O1, C–H26···O1, C–H25···O4 and C–H27···O4 hydrogen bonds with bond distances of 2.370, 2.474, 2.564 and 2.685 Å, respectively. These interactions contribute to the formation of stable inclusion complexes. Figure 4d is a
  • one-dimensional supramolecular chain of G@TMeQ[6], which is composed of hydrogen bonds C24–H···O6 and N13–H···O6 formed by the protons on the pyridyl group outside the cavity and the carbonyl oxygen of the adjacent TMeQ[6] port. The G molecule acts as a medium for connecting two adjacent TMeQ[6]. The
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2023

Eschenmoser coupling reactions starting from primary thioamides. When do they work and when not?

  • Lukáš Marek,
  • Jiří Váňa,
  • Jan Svoboda and
  • Jiří Hanusek

Beilstein J. Org. Chem. 2023, 19, 808–819, doi:10.3762/bjoc.19.61

Graphical Abstract
  • nitrogen and carbonyl oxygen, generating both nucleophilic and electrophilic centers, i.e., a free amino group and protonated carbonyl group, which is much more prone to nucleophilic attack than a carbonyl group itself. Quantum calculations (see the left side of Figure 2) show that the relative stabilities
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2023

Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions

  • Masahiro Hosoya,
  • Yusuke Saito and
  • Yousuke Horiuchi

Beilstein J. Org. Chem. 2023, 19, 752–763, doi:10.3762/bjoc.19.55

Graphical Abstract
  • , which diminishes the atom economy [2]. To overcome this limitation, the use of molecular oxygen (O2) present in air as an oxidant is one of the ideal solutions [10][11]. The reduction of O2 generates only water as a byproduct, leading to high atom-economy processes. However, the use of O2 as an oxidant
  • has safety risks due to its potential for explosions when employed on a manufacturing scale [12]. These risks are due to the presence of two out of the three elements of combustion, namely combustibles, oxygen supply and an ignition source [13], and unexpected ignition caused by static electricity
  • [15][16]. A compact and closed system improves the process safety of handling molecular oxygen by eliminating unexpected ignition. The safety advantage stimulates the development of various aerobic oxidation processes under continuous-flow conditions accompanied by dedicated devices such as tube-in
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • the NG precursor 39 by heating dialkyne 38 and tetracyclone 2, which led to two hexarylbenzene units connected by an oxygen linker. Upon treatment of 39 under Scholl reaction conditions (DDQ, TfOH), an oxa-[7]helicene containing chiral NG 40 was obtained in high yield [43]. Meanwhile, they enlarged
PDF
Album
Review
Published 30 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • an oxygen in the heterocyclic ring as opposed to nitrogen in azepines, are known from natural sources (compounds 13–18 as examples) [17][18][19][20][21][22][23][24][25], the application thereof in a clinical setting is limited (Figure 5). Novartis CGP 3466 (19), a propargylamine derivative, showed
  • 10,11-dihydrodibenzo[b,f]heteropines (2). The following section will briefly touch on functionalisation of the scaffold. While some reports are limited to the introduction of a single heteroatom, e.g., nitrogen in the case of azepines 1a or oxygen in the case of oxepines 1b, some approaches allow for
  • transition metal (Ni, Fe, V) porphyrin catalysts and oxygen. Catalytic reduction (H2, Pd/C) affords 2,2'-diaminobibenzyl (20) in the subsequent step [28]. 1.2 Ring-closing via amine condensation The initial synthesis of 10,11-dihydro-5H-dibenzo[b,f]azepine (2a) was reported in 1899 by Thiele and Holzinger
PDF
Album
Review
Published 22 May 2023

Synthesis of medium and large phostams, phostones, and phostines

  • Jiaxi Xu

Beilstein J. Org. Chem. 2023, 19, 687–699, doi:10.3762/bjoc.19.50

Graphical Abstract
  • of the etheric oxygen atom and the antibonding orbital of the P=O bond (the stereoelectronic effect), leading to the more stable anti-diastereomer 74 (Scheme 16) [38]. In the phostone 74 was installed a linker 2-(5-aminopentoxy) group via transesterification with benzyl N-(5-hydroxypentyl)carbamate
PDF
Album
Review
Published 15 May 2023
Other Beilstein-Institut Open Science Activities