Search for "benzoic acid" in Full Text gives 163 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2010, 6, 880–921, doi:10.3762/bjoc.6.88
Graphical Abstract
Figure 1: Examples of industrial fluorine-containing bio-active molecules.
Figure 2: CF3(S)- and CF3(O)-containing pharmacologically active compounds.
Figure 3: Hypotensive candidates with SRF and SO2RF groups – analogues of Losartan and Nifedipin.
Figure 4: The variety of the pharmacological activity of RFS-substituted compounds.
Figure 5: Recent examples of compounds containing RFS(O)n-groups [12-18].
Scheme 1: Fluorination of ArSCCl3 to corresponding ArSCF3 derivatives. For references see: a[38-43]; b[41,42]; c[43]; d[44]; e[38-43,45-47]; f[38-43,48,49]; g...
Scheme 2: Preparation of aryl pentafluoroethyl sulfides.
Scheme 3: Mild fluorination of the aryl SCF2Br derivatives.
Scheme 4: HF fluorinations of aryl α,α,β-trichloroisobutyl sulfide at various conditions.
Scheme 5: Monofluorination of α,α-dichloromethylene group.
Scheme 6: Electrophilic substitution of phenols with CF3SCl [69].
Scheme 7: Introduction of SCF3 groups into activated phenols [71-74].
Scheme 8: Preparation of tetrakis(SCF3)-4-methoxyphenol [72].
Scheme 9: The interactions of resorcinol and phloroglucinol derivatives with RFSCl.
Scheme 10: Reactions of anilines with CF3SCl.
Scheme 11: Trifluoromethylsulfanylation of anilines with electron-donating groups in the meta position [74].
Scheme 12: Reaction of benzene with CF3SCl/CF3SO3H [77].
Scheme 13: Reactions of trifluoromethyl sulfenyl chloride with aryl magnesium and -mercury substrates.
Scheme 14: Reactions of pyrroles with CF3SCl.
Scheme 15: Trifluoromethylsulfanylation of indole and indolizines.
Scheme 16: Reactions of N-methylpyrrole with CF3SCl [80,82].
Scheme 17: Reactions of furan, thiophene and selenophene with CF3SCl.
Scheme 18: Trifluoromethylsulfanylation of imidazole and thiazole derivatives [83].
Scheme 19: Trifluoromethylsulfanylation of pyridine requires initial hydride reduction.
Scheme 20: Introduction of additional RFS-groups into heterocyclic compounds in the presence of CF3SO3H.
Scheme 21: Introduction of additional RFS-groups into pyrroles [82,87].
Scheme 22: By-products in reactions of pyrroles with CF3SCl [82].
Scheme 23: Reaction of aromatic iodides with CuSCF3 [93,95].
Scheme 24: Reaction of aromatic iodides with RFZCu (Z = S, Se), RF = CF3, C6F5 [93,95,96].
Scheme 25: Side reactions during trifluoromethylsulfanylation of aromatic iodides with CF3SCu [98].
Scheme 26: Reactions with in situ generated CuSCF3.
Scheme 27: Perfluoroalkylthiolation of aryl iodides with bulky RFSCu [105].
Scheme 28: In situ formation and reaction of RFZCu with aryl iodides.
Figure 6: Examples of compounds obtained using in situ generated RFZCu methodology [94].
Scheme 29: Introduction of SCF3 group into aromatics via difluorocarbene.
Scheme 30: Tetrakis(dimethylamino)ethylene dication trifluoromethyl thiolate as a stable reagent for substitut...
Scheme 31: The use of CF2=S/CsF or (CF3S)2C=S/CsF for the introduction of CF3S groups into fluorinated heteroc...
Scheme 32: One-pot synthesis of ArSCF3 from ArX, CCl2=S and KF.
Scheme 33: Reaction of aromatics with CF3S− Kat+ [115].
Scheme 34: Reactions of activated aromatic chlorides with AgSCF3/KI.
Scheme 35: Comparative CuSCF3/KI and Hg(SCF3)2/KI reactions.
Scheme 36: Me3SnTeCF3 – a reagent for the introduction of the TeCF3 group.
Scheme 37: Sandmeyer reactions with CuSCF3.
Scheme 38: Reactions of perfluoroalkyl iodides with alkali and organolithium reagents.
Scheme 39: Perfluoroalkylation with preliminary breaking of the disulfide bond.
Scheme 40: Preparation of RFS-substituted anilines from dinitrodiphenyl disulfides.
Scheme 41: Photochemical trifluoromethylation of 2,4,6-trimercaptochlorobenzene [163].
Scheme 42: Putative process for the formation of B, C and D.
Scheme 43: Trifluoromethylation of 2-mercapto-4-hydroxy-6-trifluoromethylyrimidine [145].
Scheme 44: Deactivation of 2-mercapto-4-hydroxypyrimidines S-centered radicals.
Scheme 45: Perfluoroalkylation of thiolates with CF3Br under UV irradiation.
Scheme 46: Catalytic effect of methylviologen for RF• generation.
Scheme 47: SO2−• catalyzed trifluoromethylation.
Scheme 48: Electrochemical reduction of CF3Br in the presence of SO2 [199,200].
Scheme 49: Participation of SO2 in the oxidation of ArSCF3−•.
Scheme 50: Electron transfer cascade involving SO2 and MV.
Scheme 51: Four stages of the SRN1 mechanism for thiol perfluoroalkylation.
Scheme 52: A double role of MV in the catalysis of RFI reactions with aryl thiols.
Scheme 53: Photochemical reaction of pentafluoroiodobenzene with trifluoromethyl disulfide.
Scheme 54: N- Trifluoromethyl-N-nitrosobenzene sulfonamide – a source of CF3• radicals [212,213].
Scheme 55: Radical trifluoromethylation of organic disulfides with ArSO2N=NCF3.
Scheme 56: Barton’s S-perfluoroalkylation reactions [216].
Scheme 57: Decarboxylation of thiohydroxamic esters in the presence of C6F13I.
Scheme 58: Reactions of thioesters of trifluoroacetic and trifluoromethanesulfonic acids in the presence of ar...
Scheme 59: Perfluoroalkylation of polychloropyridine thiols with xenon perfluorocarboxylates or XeF2 [222,223].
Scheme 60: Interaction of Xe(OCORF)2 with nitroaryl disulfide [227].
Scheme 61: Bi(CF3)3/Cu(OCOCH3)2 trifluoromethylation of thiophenolate [230].
Scheme 62: Reaction of fluorinated carbanions with aryl sulfenyl chlorides.
Scheme 63: Reaction of methyl perfluoromethacrylate with PhSCl in the presence of fluoride.
Scheme 64: Reactions of ArSCN with potassium and magnesium perfluorocarbanions [237].
Scheme 65: Reactions of RFI with TDAE and organic disulfides [239,240].
Scheme 66: Decarboxylation of perfluorocarboxylates in the presence of disulfides [245].
Scheme 67: Organization of a stable form of “CF3−” anion in the DMF.
Scheme 68: Silylated amines in the presence of fluoride can deprotonate fluoroform for reaction with disulfide...
Figure 7: Other examples of aminomethanols [264].
Scheme 69: Trifluoromethylation of diphenyl disulfide with PhSO2CF3/t-BuOK.
Scheme 70: Amides of trifluoromethane sulfinic acid are sources of CF3− anion.
Scheme 71: Trifluoromethylation of various thiols using “hyper-valent” iodine (III) reagent [279].
Scheme 72: Trifluoromethylation of p-nitrothiophenolate with diaryl CF3 sulfonium salts [280].
Scheme 73: Trifluoromethyl transfer from dibenzo (CF3)S-, (CF3)Se- and (CF3)Te-phenium salts to thiolates [283].
Scheme 74: Multi-stage paths for synthesis of dibenzo-CF3-thiophenium salts [61].
Beilstein J. Org. Chem. 2010, 6, No. 43, doi:10.3762/bjoc.6.43
Graphical Abstract
Scheme 1: Proposed mechanism for the decarboxylative Heck reaction.
Beilstein J. Org. Chem. 2010, 6, No. 32, doi:10.3762/bjoc.6.32
Graphical Abstract
Figure 1: Biologically important amines and quaternary ammonium salts: histamine (1), dopamine (2) and acetyl...
Figure 2: Crown ether 18-crown-6.
Figure 3: Conformations of 18-crown-6 (4) in solvents of different polarity.
Figure 4: Binding topologies of the ammonium ion depending on the crown ring size.
Figure 5: A “pseudorotaxane” structure consisting of 24-crown-8 and a secondary ammonium ion (5); R = Ph.
Figure 6: Typical examples of azacrown ethers, cryptands and related aza macrocycles.
Figure 7: Binding of ammonium to azacrown ethers and cryptands [111-113].
Figure 8: A 19-crown-6-ether with decalino blocking groups (11) and a thiazole-dibenzo-18-crown-6-ether (12).
Figure 9: 1,3-Bis(6-oxopyridazin-1-yl)propane derivatives 13 and 14 by Campayo et al.
Figure 10: Fluorescent azacrown-PET-sensors based on coumarin.
Figure 11: Two different pyridino-cryptands (17 and 18) compared to a pyridino-crown (19); chiral ammonium ion...
Figure 12: Pyridino-18-crown-6 ligand (21), a similar acridino-18-crown-6 ligand (22) and a structurally relat...
Figure 13: Ciral pyridine-azacrown ether receptors 24.
Figure 14: Chiral 15-crown-5 receptors 26 and an analogue 18-crown-6 ligand 27 derived from amino alcohols.
Figure 15: C2-symmetric chiral 18-crown-6 amino alcohol derivatives 28 and related macrocycles.
Figure 16: Macrocycles with diamide-diester groups (30).
Figure 17: C2-symmetric chiral aza-18-crown-6 ethers (31) with phenethylamine residues.
Figure 18: Chiral C-pivot p-methoxy-phenoxy-lariat ethers.
Figure 19: Chiral lariat crown ether 34.
Figure 20: Sucrose-based chiral crown ether receptors 36.
Figure 21: Permethylated fructooligosaccharide 37 showing induced-fit chiral recognition.
Figure 22: Biphenanthryl-18-crown-6 derivative 38.
Figure 23: Chiral lariat crown ethers derived from binol by Fuji et al.
Figure 24: Chiral phenolic crown ether 41 with “aryl chiral barriers” and guest amines.
Figure 25: Chiral bis-crown receptor 43 with a meso-ternaphthalene backbone.
Figure 26: Chromogenic pH-dependent bis-crown chemosensor 44 for diamines.
Figure 27: Triamine guests for binding to receptor 44.
Figure 28: Chiral bis-crown phenolphthalein chemosensors 46.
Figure 29: Crown ether amino acid 47.
Figure 30: Luminescent receptor 48 for bis-alkylammonium guests.
Figure 31: Luminescent CEAA (49a), a bis-CEAA receptor for amino acids (49b) and the structure of lysine bindi...
Figure 32: Luminescent CEAA tripeptide for binding small peptides.
Figure 33: Bis crown ether 51a self assembles co-operatively with C60-ammonium ion 51b.
Figure 34: Triptycene-based macrotricyclic dibenzo-[24]-crown-8 ether host 52 and guests.
Figure 35: Copper imido diacetic acid azacrown receptor 53a and the suggested His-Lys binding motif; a copper ...
Figure 36: Urea (54) and thiourea (55) benzo crown receptor for transport and extraction of amino acids.
Figure 37: Crown pyryliums ion receptors 56 for amino acids.
Figure 38: Ditopic sulfonamide bridged crown ether receptor 57.
Figure 39: Luminescent peptide receptor 58.
Figure 40: Luminescent receptor 59 for the detection of D-glucosamine hydrochloride in water/ethanol and lumin...
Figure 41: Guanidinium azacrown receptor 61 for simple amino acids and ditopic receptor 62 with crown ether an...
Figure 42: Chiral bicyclic guanidinium azacrown receptor 63 and similar receptor 64 for the enantioselective t...
Figure 43: Receptors for zwitterionic species based on luminescent CEAAs.
Figure 44: 1,10-Azacrown ethers with sugar podand arms and the anticancer agent busulfan.
Figure 45: Benzo-18-crown-6 modified β-cyclodextrin 69 and β-cyclodextrin functionalized with diaza-18-crown-6...
Figure 46: Receptors for colorimetric detection of primary and secondary ammonium ions.
Figure 47: Porphyrine-crown-receptors 72.
Figure 48: Porphyrin-crown ether conjugate 73 and fullerene-ammonium ion guest 74.
Figure 49: Calix[4]arene (75a), homooxocalix[4]arene (75b) and resorcin[4]arene (75c) compared (R = H, alkyl c...
Figure 50: Calix[4]arene and ammonium ion guest (R = H, alkyl, OAcyl etc.), possible binding sites; A: co-ordi...
Figure 51: Typical guests for studies with calixarenes and related molecules.
Figure 52: Lower rim modified p-tert-butylcalix[5]arenes 82.
Figure 53: The first example of a water soluble calixarene.
Figure 54: Sulfonated water soluble calix[n]arenes that bind ammonium ions.
Figure 55: Displacement assay for acetylcholine (3) with a sulfonato-calix[6]arene (84b).
Figure 56: Amino acid inclusion in p-sulfonatocalix[4]arene (84a).
Figure 57: Calixarene receptor family 86 with upper and lower rim functionalization.
Figure 58: Calix[6]arenes 87 with one carboxylic acid functionality.
Figure 59: Sulfonated calix[n]arenes with mono-substitution at the lower rim systematically studied on their r...
Figure 60: Cyclotetrachromotropylene host (91) and its binding to lysine (81c).
Figure 61: Calixarenes 92 and 93 with phosphonic acids groups.
Figure 62: Calix[4]arene tetraphosphonic acid (94a) and a double bridged analogue (94b).
Figure 63: Calix[4]arene tetraphosphonic acid ester (92c) for surface recognition experiments.
Figure 64: Calixarene receptors 95 with α-aminophosphonate groups.
Figure 65: A bridged homocalix[3]arene 95 and a distally bridged homocalix[4]crown 96.
Figure 66: Homocalix[3]arene ammonium ion receptor 97a and the Reichardt’s dye (97b) for colorimetric assays.
Figure 67: Chromogenic diazo-bridged calix[4]arene 98.
Figure 68: Calixarene receptor 99 by Huang et al.
Figure 69: Calixarenes 100 reported by Parisi et al.
Figure 70: Guest molecules for inclusion in calixarenes 100: DAP × 2 HCl (101a), APA (101b) and Lys-OMe × 2 HC...
Figure 71: Different N-linked peptido-calixarenes open and with glycol chain bridges.
Figure 72: (S)-1,1′-Bi-2-naphthol calixarene derivative 104 published by Kubo et al.
Figure 73: A chiral ammonium-ion receptor 105 based on the calix[4]arene skeleton.
Figure 74: R-/S-phenylalaninol functionalized calix[6]arenes 106a and 106b.
Figure 75: Capped homocalix[3]arene ammonium ion receptor 107.
Figure 76: Two C3 symmetric capped calix[6]arenes 108 and 109.
Figure 77: Phosphorous-containing rigidified calix[6]arene 110.
Figure 78: Calix[6]azacryptand 111.
Figure 79: Further substituted calix[6]azacryptands 112.
Figure 80: Resorcin[4]arene (75c) and the cavitands (113).
Figure 81: Tetrasulfonatomethylcalix[4]resorcinarene (114).
Figure 82: Resorcin[4]arenes (115a/b) and pyrogallo[4]arenes (115c, 116).
Figure 83: Displacement assay for acetylcholine (3) with tetracyanoresorcin[4]arene (117).
Figure 84: Tetramethoxy resorcinarene mono-crown-5 (118).
Figure 85: Components of a resorcinarene based displacement assay for ammonium ions.
Figure 86: Chiral basket resorcin[4]arenas 121.
Figure 87: Resorcinarenes with deeper cavitand structure (122).
Figure 88: Resorcinarene with partially open deeper cavitand structure (123).
Figure 89: Water-stabilized deep cavitands with partially structure (124, 125).
Figure 90: Charged cavitands 126 for tetralkylammonium ions.
Figure 91: Ditopic calix[4]arene receptor 127 capped with glycol chains.
Figure 92: A calix[5]arene dimer for diammonium salt recognition.
Figure 93: Calixarene parts 92c and 129 for the formation molecular capsules.
Figure 94: Encapsulation of a quaternary ammonium cation by two resorcin[4]arene molecules (NMe4+@[75c]2 × Cl−...
Figure 95: Encapsulation of a quaternary ammonium cation by six resorcin[4]arene molecules (NMe3D+@[130]6 × Cl−...
Figure 96: Structure and schematic of cucurbit[6]uril (CB[6], 131a).
Figure 97: Cyclohexanocucurbit[6]uril (CB′[6], 132) and the guest molecule spermine (133).
Figure 98: α,α,δ,δ-Tetramethylcucurbit[6]uril (134).
Figure 99: Structure of the cucurbituril-phthalhydrazide analogue 135.
Figure 100: Organic cavities for the displacement assay for amine differentiation.
Figure 101: Displacement assay methodology for diammonium- and related guests involving cucurbiturils and some ...
Figure 102: Nor-seco-Cucurbituril (±)-bis-ns-CB[6] (140) and guest molecules.
Figure 103: The cucurbit[6]uril based complexes 141 for chiral discrimination.
Figure 104: Cucurbit[7]uril (131c) and its ferrocene guests (142) opposed.
Figure 105: Cucurbit[7]uril (131c) guest inclusion and representative guests.
Figure 106: Cucurbit[7]uril (131c) binding to succinylcholine (145) and different bis-ammonium and bis-phosphon...
Figure 107: Paraquat-cucurbit[8]uril complex 149.
Figure 108: Gluconuril-based ammonium receptors 150.
Figure 109: Examples of clefts (151a), tweezers (151b, 151c, 151d) and clips (151e).
Figure 110: Kemp’s triacid (152a), on example of Rebek’s receptors (152b) and guests.
Figure 111: Amino acid receptor (154) by Rebek et al.
Figure 112: Hexagonal lattice designed hosts by Bell et al.
Figure 113: Bell’s amidinium receptor (156) and the amidinium ion (157).
Figure 114: Aromatic phosphonic acids.
Figure 115: Xylene phosphonates 159 and 160a/b for recognition of amines and amino alcohols.
Figure 116: Bisphosphonate recognition motif 161 for a colorimetric assay with alizarin complexone (163) for ca...
Figure 117: Bisphosphonate/phosphate clip 164 and bisphosphonate cleft 165.
Figure 118: N-Methylpyrazine 166a, N-methylnicotinamide iodide (166b) and NAD+ (166c).
Figure 119: Bisphosphate cavitands.
Figure 120: Bisphosphonate 167 of Schrader and Finocchiaro.
Figure 121: Tweezer 168 for noradrenaline (80b).
Figure 122: Different tripods and heparin (170).
Figure 123: Squaramide based receptors 172.
Figure 124: Cage like NH4+ receptor 173 of Kim et al.
Figure 125: Ammonium receptors 174 of Chin et al.
Figure 126: 2-Oxazolin-based ammonium receptors 175a–d and 176 by Ahn et al.
Figure 127: Racemic guest molecules 177.
Figure 128: Tripods based on a imidazole containing macrocycle (178) and the guest molecules employed in the st...
Figure 129: Ammonium ion receptor 180.
Figure 130: Tetraoxa[3.3.3.3]paracyclophanes 181 and a cyclophanic tetraester (182).
Figure 131: Peptidic bridged paraquat-cyclophane.
Figure 132: Shape-selective noradrenaline host.
Figure 133: Receptor 185 for binding of noradrenaline on surface layers from Schrader et al.
Figure 134: Tetraphosphonate receptor for binding of noradrenaline.
Figure 135: Tetraphosphonate 187 of Schrader and Finocchiaro.
Figure 136: Zinc-Porphyrin ammonium-ion receptors 188 and 189 of Mizutani et al.
Figure 137: Zinc porphyrin receptor 190.
Figure 138: Zinc porphyrin receptors 191 capable of amino acid binding.
Figure 139: Zinc-porphyrins with amino acid side chains for stereoinduction.
Figure 140: Bis-zinc-bis-porphyrin based on Tröger’s base 193.
Figure 141: BINAP-zinc-prophyrin derivative 194 and it’s guests.
Figure 142: Bisaryl-linked-zinc-porphyrin receptors.
Figure 143: Bis-zinc-porphyrin 199 for diamine recognition and guests.
Figure 144: Bis-zinc-porphyrin crown ether 201.
Figure 145: Bis-zinc-porphyrin 202 for stereodiscrimination (L = large substituent; S = small substituent).
Figure 146: Bis-zinc-porphyrin[3]rotaxane and its copper complex and guests.
Figure 147: Dien-bipyridyl ligand 206 for co-ordination of two metal atoms.
Figure 148: The ligand and corresponding tetradentate co-complex 207 serving as enantioselective receptor for a...
Figure 149: Bis(oxazoline)–copper(II) complex 208 for the recognition of amino acids in aqueous solution.
Figure 150: Zinc-salen-complexes 209 for the recognition tertiary amines.
Figure 151: Bis(oxazoline)–copper(II) 211 for the recognition of amino acids in aqueous solution.
Figure 152: Zn(II)-complex of a C2 terpyridine crown ether.
Figure 153: Displacement assay and receptor for aspartate over glutamate.
Figure 154: Chiral complex 214 for a colorimetric displacement assay for amino acids.
Figure 155: Metal complex receptor 215 with tripeptide side arms.
Figure 156: A sandwich complex 216 and its displaceable dye 217.
Figure 157: Lanthanide complexes 218–220 for amino acid recognition.
Figure 158: Nonactin (221), valinomycin (222) and vancomycin (223).
Figure 159: Monesin (224a) and a chiral analogue for enantiodiscrimination of ammonium guests (224b).
Figure 160: Chiral podands (226) compared to pentaglyme-dimethylether (225) and 18-crown-6 (4).
Figure 161: Lasalocid A (228).
Figure 162: Lasalocid derivatives (230) of Sessler et al.
Figure 163: The Coporphyrin I tetraanion (231).
Figure 164: Linear and cyclic peptides for ammonium ion recognition.
Figure 165: Cyclic and bicyclic depsipeptides for ammonium ion recognition.
Figure 166: α-Cyclodextrin (136a) and novocaine (236).
Figure 167: Helical diol receptor 237 by Reetz and Sostmann.
Figure 168: Ammonium binding spherand by Cram et al. (238a) and the cyclic[6]metaphenylacetylene 238b in compar...
Figure 169: Receptor for peptide backbone and ammonium binding (239).
Figure 170: Anion sensor principle with 3-hydroxy-2-naphthanilide of Jiang et al.
Figure 171: 7-bromo-3-hydroxy-N-(2-hydroxyphenyl)naphthalene 2-carboxamide (241) and its amine binding.
Figure 172: Naturally occurring catechins with affinity to quaternary ammonium ions.
Figure 173: Spiropyran (244) and merocyanine form (244a) of the amino acid receptors of Fuji et al.
Figure 174: Coumarin aldehyde (245) and its iminium species with amino acid bound (245a) by Glass et al.
Figure 175: Coumarin aldehyde appended with boronic acid.
Figure 176: Quinolone aldehyde dimers by Glass et al.
Figure 177: Chromogenic ammonium ion receptors with trifluoroacetophenone recognition motifs.
Figure 178: Chromogenic ammonium ion receptor with trifluoroacetophenone recognition motif bound on different m...
Beilstein J. Org. Chem. 2010, 6, No. 24, doi:10.3762/bjoc.6.24
Graphical Abstract
Scheme 1: The natural forms of sialic acids, human N-acetylneuraminic acid (Neu5Ac, 1) and mammalian N-glycol...
Scheme 2: Synthesis of N-(1-oxohex-5-ynyl)neuraminic acid (Neu5Hex 3).
Scheme 3: Metabolic pathway of Ac4GlcNAz and the genetic control of Neu5Ac 1 synthesis by feedback inhibition...
Scheme 4: Proposed metabolic pathway of Neu5Hex 3 based on known mechanisms of Neu5Gc 2 uptake [5]. TGN: trans-G...
Scheme 5: Labelling of alkynylated neuraminic acid by azido-fluorescein.
Figure 1: Top left: HEp-2 cells incorporated with Ac4GlcNAz 16, labelled with alkynylated TAMRA at 580 nm. Bo...
Beilstein J. Org. Chem. 2010, 6, No. 21, doi:10.3762/bjoc.6.21
Graphical Abstract
Figure 1: Typical representatives of iminosugars.
Figure 2: N-Modified iminosugars 5–9 as potential pharmacological chaperones.
Figure 3: Structure of NOEV 10.
Scheme 1: Three-step-synthesis of partially protected 1-deoxy-D-galactonojirimycin derivative 12 from 10 via ...
Scheme 2: Synthesis of N-(6-aminohexyl)-1-deoxygalactonojirimycin (15) from 12 via 14.
Scheme 3: Synthesis of lipophilic 1-deoxy-D-galactonojirimycin derivatives 16–18 by chemoselective acylation ...
Scheme 4: Synthesis of compounds 19 as well as 20 from primary amine 15.
Scheme 5: Synthesis of compound 22.
Beilstein J. Org. Chem. 2010, 6, No. 20, doi:10.3762/bjoc.6.20
Graphical Abstract
Figure 1: Schematic representation of sugar aminoacids (SAAs) and (pseudo)amide oligosaccharide mimetics.
Figure 2: Natural SAAs structures and natural nucleosidic antibiotics.
Scheme 1: Synthetic route to the target amide-linked sialooligomers. (a) Fmoc-Cl, NaHCO3, H2O, dioxane, 0 °C....
Figure 3: The general structure of glycoamino acids and their corresponding oligomers.
Figure 4: Conformational analysis of the β(1→2)-amide-linked glucooligomer 9.
Figure 5: Short oligomeric chains of C-glycosyl D-arabino THF amino acid oligomers.
Figure 6: (A) Stereoview of the minimized structure of compound 16 (produced by a 500 ps simulation) that mos...
Figure 7: Structures of linear oxetane-β- and δ-SAA homo-oligomers 19–20.
Figure 8: 10-Membered ring H-bonds in compound 21 consistent with NMR and modelling investigations.
Figure 9: General structure of carbopeptoid-oligonucleotide conjugates.
Figure 10: Protected derivatives of 2,6-diamino-2,6-dideoxy-β-D-glucopyranosyl carboxylic acid 22 and 23.
Figure 11: Cyclic homo-oligomers containing glucopyranoid-SAAs.
Scheme 2: Strategy for solid-phase synthesis of cyclic trimers and tetramers containing pyranoid δ-SAAs.
Figure 12: Cyclic tetramers of L-rhamno- and D-gulo-configured oxetane-SAAs.
Figure 13: Aminoglycosidic antibiotics of the glycocinnamoylspermidine family.
Scheme 3: Synthesis of (thio)trehazoline, via triflate, from β-hydroxy(thio)urea.
Figure 14: Approaches to access pseudoamide-type oligosaccharide mimics.
Figure 15: Calystegine B2 analogues 38 and 39 with urea-linked disaccharide structure.
Figure 16: Rotameric equilibrium shift of 40 by formation of a bidentate hydrogen bond.
Figure 17: Nucleotide analogues with thiourea and S-methylisothiouronium linkers.
Scheme 4: Retrosynthetic approach to synthesize thiourea-linked glycooligomers.
Figure 18: Rotameric equilibria for β-(1→6)-thiourea-linked glucodimer 41.
Figure 19: Schematic representation of (a) cyclodextrin (CDs) and (b) cyclotrehalan (CTs) family members.
Scheme 5: Synthesis of guanidine-linked pseudodisaccharides via carbodiimide.
Figure 20: β(1→6)-Guanidine-linked pseudodi- and pseudotrisaccharides 47 and 48.
Scheme 6: Synthesis of N-benzylguanidine-linked CT2 50.
Figure 21: Structure of RNG and DNG.
Figure 22: Preparation of Fmoc-guanidinium derivatives.
Figure 23: Structures of the homo-oligomeric RNG derivatives 51–55.
Figure 24: Phosphoramidite building block 56.
Figure 25: Structures of DNGs 57–65.
Figure 26: Structure of the phosphoramidite building block 66.
Beilstein J. Org. Chem. 2009, 5, No. 72, doi:10.3762/bjoc.5.72
Graphical Abstract
Scheme 1: Synthesis of novel N-alkyl-N-(ethyl phosphonate) (meth)acrylamides 3. For 2a, 2b, 3a, 3b: R1 = H, x...
Figure 1: Hydrolysis of N-alkyl-N-(phosphonoethyl) substituted (meth)acrylamides 3 of Scheme 1 and of methacrylic aci...
Figure 2: Etch pattern of enamel etched with a) Conditioner 36, magnification 11 × 103, b) acidic monomer 3g (...
Figure 3: Shear bond strength (SBS) of phosphonic acids 3c, 3e, 3f and 3g in a formulation of an aqueous etha...
Beilstein J. Org. Chem. 2009, 5, No. 52, doi:10.3762/bjoc.5.52
Graphical Abstract
Scheme 1: Synthesis of banana bridged discotic dimer. Reagents and conditions; (i) Br(CH2)12Br, Cs2CO3, MEK, ...
Scheme 2: Synthesis of banana-discotic dimers.
Beilstein J. Org. Chem. 2009, 5, No. 35, doi:10.3762/bjoc.5.35
Graphical Abstract
Figure 1: Mechanism of Au(III)-catalyzed benzannulation between aromatic carbonyls and alkynes.
Figure 2: X-ray analysis of the metal films used in this benzannulation study. Panels a–e are scanning-electr...
Beilstein J. Org. Chem. 2009, 5, No. 13, doi:10.3762/bjoc.5.13
Graphical Abstract
Scheme 1: Three-step synthesis of silica-bound benzoyl chloride.
Scheme 2: Plausible mechanisms for the synthesis of benzoxazinones 5a–f.
Beilstein J. Org. Chem. 2008, 4, No. 13, doi:10.3762/bjoc.4.13
Graphical Abstract
Figure 1: OCF3-bearing pesticides.
Scheme 1: Preparation of trifluoromethyl ethers via a chlorination/fluorination sequence.
Scheme 2: Preparation of trifluoromethyl ethers via an in situ chlorination/fluorination sequence.
Scheme 3: Preparation of trifluoromethyl ethers via chlorothionoformates.
Scheme 4: Preparation of trifluoromethyl ethers via fluoroformates.
Scheme 5: Oxidative desulfurization-fluorination toward trifluoromethyl ethers.
Scheme 6: Mechanism of the oxidative desulfurization-fluorination.
Scheme 7: Umemoto's O-(trifluoromethyl)dibenzofuranium salts 4 as CF3-transfer agents.
Scheme 8: Togni's approach using hypervalent iodine compounds as CF3-transfer agents.
Scheme 9: TAS OCF3 as a nucleophilic OCF3-transfer agent.
Figure 2: Mesomeric structures of the OCF3-group.
Figure 3: Structures of 6 and 7.
Figure 4: Conformational preference of the trifluoromethoxy group on aryl rings.
Scheme 10: Nitration of trifluoromethoxy benzene.
Scheme 11: Synthesis and Nitration of N-Acetyl-(trifluoromethoxy)anilines.
Scheme 12: Bromine/lithium exchange of bromo(trifluoromethoxy)benzenes.
Scheme 13: Metalation of (trifluoromethoxy)benzene.
Scheme 14: Metalation of (trifluoromethoxy)naphthalenes.
Scheme 15: Competition between -CF3- and -OCF3 in Metalation reactions.
Scheme 16: Competition between -F- and -OCF3 in Metalation reactions.
Scheme 17: Metalation of trifluoromethoxyanisoles.
Figure 5: Direction of π-polarization depending on the substituent as described by Schlosser et al. [57].
Scheme 18: Metalation of Bromo(trifluoromethoxy)benzenes.
Scheme 19: Aryne formation from bromo(trifluoromethoxy)phenyllithiums and subsequent Diels-Alder cycloaddition...
Scheme 20: Metalation of (trifluoromethoxy)anilines.
Beilstein J. Org. Chem. 2007, 3, No. 36, doi:10.1186/1860-5397-3-36
Graphical Abstract
Scheme 1: Electronic and steric differentiations provide the basis for the high selectivity of P,N-ligands in...
Scheme 2: Activation (ΔEa) and reaction (ΔEr) energies (kcal mol-1), computed for the P,N-ligand model with t...
Figure 1: Transition structure for the energetically favored trans to phosphorus addition of ammonia at the P...
Figure 2: Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the ...
Figure 3: Transition structure for the energetically disfavored trans to phosphorus addition of ammonia at th...
Figure 4: Transition structure for the energetically favored cis to phosphorus addition of ammonia at the Pd-η...
Figure 5: Transition structure for the energetically favored trans to phosphorus addition of ammonia at the P...
Figure 6: Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the ...
Figure 7: Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the ...
Figure 8: Transition structure for the energetically favored trans to phosphorus addition of ammonia at the P...
Figure 9: For each phosphabenzene moiety, the site selectivities ΔEaTS increase with more electron withdrawin...
Figure 10: Higher site selectivities, i.e. larger ΔEaTS values, are found for earlier transition structures wi...
Figure 11: Higher site selectivities, i.e. larger ΔEaTS values, are found for transition structures with close...
Beilstein J. Org. Chem. 2006, 2, No. 3, doi:10.1186/1860-5397-2-3
Graphical Abstract
Scheme 1: Reduction of nitrobenzene to aniline [23]
Scheme 2: Oxidation of benzyl chloride to benzoic acid [24]
Scheme 3: Synthesis of benzamide [25]
Scheme 4: Synthesis of benzamide using HMDS [26]