Search results

Search for "biologically active" in Full Text gives 558 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Graphical Abstract
  • , which have potent activity against breast cancer. The easy access to the corresponding sulfones presents a versatile route for the implementation of a new biologically active moiety, the sulfone, to the β-naphthyl-β-sulfanyl ketones. The enantioenriched products of both classes can be evaluated as
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2021

Synthetic strategies of phosphonodepsipeptides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2021, 17, 461–484, doi:10.3762/bjoc.17.41

Graphical Abstract
  • synthetic methods, the multicomponent Mannich-type condensation strategy shows a high efficiency, convergent feature, and product diversity. It can be expected that the convergent multicomponent condensation synthetic strategy will show wide applications in the preparation of biologically active
PDF
Album
Review
Published 16 Feb 2021

Synthesis of trifluoromethyl ketones by nucleophilic trifluoromethylation of esters under a fluoroform/KHMDS/triglyme system

  • Yamato Fujihira,
  • Yumeng Liang,
  • Makoto Ono,
  • Kazuki Hirano,
  • Takumi Kagawa and
  • Norio Shibata

Beilstein J. Org. Chem. 2021, 17, 431–438, doi:10.3762/bjoc.17.39

Graphical Abstract
  • . Trifluoromethyl ketones. a) Hydrolysis of trifluoromethyl ketones. b) Selected examples of biologically active trifluoromethyl ketones. Chemistry of the CF3 anion generated from HCF3. a) Decomposition of the trifluoromethyl anion to difluorocarbene and fluoride. b) A hemiaminaloate adduct of CF3 anion to DMF. c
PDF
Album
Supp Info
Letter
Published 12 Feb 2021

Unexpected rearrangements and a novel synthesis of 1,1-dichloro-1-alkenones from 1,1,1-trifluoroalkanones with aluminium trichloride

  • Beatrice Lansbergen,
  • Catherine S. Meister and
  • Michael C. McLeod

Beilstein J. Org. Chem. 2021, 17, 404–409, doi:10.3762/bjoc.17.36

Graphical Abstract
  • researchers to utilise this functional group conversion in future syntheses of 1,1-dichloro-1-alkenes and to further investigate the unexpected reactivity of these compounds. Examples of biologically active 1,1-dichloro-1-alkenes. a) Common methods for the preparation of 1,1-dichloro-1-alkenes from aldehydes
PDF
Album
Supp Info
Letter
Published 10 Feb 2021

Hydrazides in the reaction with hydroxypyrrolines: less nucleophilicity – more diversity

  • Dmitrii A. Shabalin,
  • Evgeniya E. Ivanova,
  • Igor A. Ushakov,
  • Elena Yu. Schmidt and
  • Boris A. Trofimov

Beilstein J. Org. Chem. 2021, 17, 319–324, doi:10.3762/bjoc.17.29

Graphical Abstract
  • for the convenient chemoselective syntheses of highly functionalized azaheterocyclic scaffolds (di- and tetrahydropyridazines) with an acyl function at the nitrogen atom, thus having a substituent pattern similar to that of the known biologically active compounds of the pyridazine family. Moreover
  • , the presence of other nucleophilic functions in the hydrazide component creates diversification points and enables more complex molecular architectures to be assembled that was demonstrated by the synthesis of partially saturated azatricyclic systems. Biologically active di- and tetrahydropyridazines
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2021

19F NMR as a tool in chemical biology

  • Diana Gimenez,
  • Aoife Phelan,
  • Cormac D. Murphy and
  • Steven L. Cobb

Beilstein J. Org. Chem. 2021, 17, 293–318, doi:10.3762/bjoc.17.28

Graphical Abstract
  • pentafluorosulfanyl (-SF5) group is proposed as a replacement for trifluoromethyl (-CF3) and has been incorporated into numerous biologically active compounds already [108][109]. Intuitively, investigating the biodegradation of these compounds in the absence of any reference compounds is complicated. Saccomanno et al
PDF
Album
Review
Published 28 Jan 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • stereoselective methods for the synthesis and transformations of cyclopropane derivatives. These investigations gained a significant interest, because cyclopropane and cyclopropene fragments are present in the structures of many biologically active substances, such as antibiotics, anticancer, and antimycotic
  • the gem-dihalomethylene fragment. Thus, they are of interest not only for the direct application as biologically active substances and functional materials but also as precursors to other fluorine-containing compounds [1][2]. Fluorine forms stable bonds to carbon and due to its high electronegativity
  • it can profoundly modify the physicochemical properties of the parent molecules. In biologically active materials fluorine substituents can affect the charge distribution, electrostatic surface, and solubility of chemical entities, thus often leading to useful outcomes. Incorporating a fluorine group
PDF
Album
Review
Published 26 Jan 2021

Decarboxylative trifluoromethylthiolation of pyridylacetates

  • Ryouta Kawanishi,
  • Kosuke Nakada and
  • Kazutaka Shibatomi

Beilstein J. Org. Chem. 2021, 17, 229–233, doi:10.3762/bjoc.17.23

Graphical Abstract
  • subsequent decarboxylative trifluoromethylthiolation were performed in a one-pot fashion. Keywords: decarboxylation; fluorinated compounds; pyridine compounds; trifluoromethylthiolation; Introduction The pyridine ring is found in numerous biologically active compounds. Therefore, efficient methods for
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2021

Direct synthesis of anomeric tetrazolyl iminosugars from sugar-derived lactams

  • Michał M. Więcław and
  • Bartłomiej Furman

Beilstein J. Org. Chem. 2021, 17, 115–123, doi:10.3762/bjoc.17.12

Graphical Abstract
  • , a rare genetic condition [27]. On the other hand, the tetrazole moiety is known to have a bioisosteric relationship to carboxylic acids [28], which also makes them suitable for usage as biologically active compounds. Vasella et al., for example, have previously prepared compounds similar to reported
  • , potentially biologically active and organocatalytic compounds. Experimental Experimental procedures and other data are available in Supporting Information File 1. Key concepts behind the goal of this work [34]. ORTEP structures of compounds 3a and 3e obtained by X-ray analysis. Hydrogen atoms and benzyl
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2021

Deoxyfluorination of acyl fluorides to trifluoromethyl compounds by FLUOLEAD®/Olah’s reagent under solvent-free conditions

  • Yumeng Liang,
  • Akihito Taya,
  • Zhengyu Zhao,
  • Norimichi Saito and
  • Norio Shibata

Beilstein J. Org. Chem. 2020, 16, 3052–3058, doi:10.3762/bjoc.16.254

Graphical Abstract
  • ]. One utility of the CF3 group is the replacement of a methyl group in biologically active molecules to avoid the metabolic oxidation of a reactive methyl group in the parent molecules [8]. It should be noted that 19% out of 340 marketed fluoro-pharmaceuticals [4] and 42% out of 424 registered fluoro
  • flash chromatography (n-hexane) to afford the title compounds. Ratios of CF3-containing drugs in marketed fluoro-pharmaceuticals and registered fluoro-agrochemicals in the world. Selected examples of CF3-containing biologically active molecules. Transformation of acyl fluorides to trifluoromethyl
PDF
Album
Supp Info
Letter
Published 14 Dec 2020

Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates

  • Hisham Qrareya,
  • Lorenzo Meazza,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 3008–3014, doi:10.3762/bjoc.16.250

Graphical Abstract
  • . Keywords: aryl phosphates; biarenes; metal-free synthesis; photochemistry; photoextrusion; Introduction It is difficult to overestimate the importance of aromatics in drug development. Indeed, introducing an aromatic or a heteroaromatic ring, most often a (substituted) phenyl ring, into a biologically
  • active compound is a common practice in medicinal chemistry [1][2][3]. In particular, the biaryl moiety is a privileged scaffold largely present in the skeleton of natural substances [4][5][6][7] and in useful chiral ligands [8][9][10]. The synthesis of biaryl derivatives remains, however, a considerable
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2020

Regioselective synthesis of heterocyclic N-sulfonyl amidines from heteroaromatic thioamides and sulfonyl azides

  • Vladimir Ilkin,
  • Vera Berseneva,
  • Tetyana Beryozkina,
  • Tatiana Glukhareva,
  • Lidia Dianova,
  • Wim Dehaen,
  • Eugenia Seliverstova and
  • Vasiliy Bakulev

Beilstein J. Org. Chem. 2020, 16, 2937–2947, doi:10.3762/bjoc.16.243

Graphical Abstract
  • thioamides with sulfonyl azides [33][41][42] (Figure 2). This method was used successfully for the synthesis of N-sulfonyl amidines of aliphatic acids and benzoic acid, including biologically active compounds. On the other hand, reactions of thioamides with electrophilic reagents have often been used for the
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2020

Three-component reactions of aromatic amines, 1,3-dicarbonyl compounds, and α-bromoacetaldehyde acetal to access N-(hetero)aryl-4,5-unsubstituted pyrroles

  • Wenbo Huang,
  • Kaimei Wang,
  • Ping Liu,
  • Minghao Li,
  • Shaoyong Ke and
  • Yanlong Gu

Beilstein J. Org. Chem. 2020, 16, 2920–2928, doi:10.3762/bjoc.16.241

Graphical Abstract
  • , and thus enriching the product diversity of the pyrrole derivatives. Representative biologically active N-(hetero)aryl-4,5-unsubstituted pyrrole scaffolds. Typical routes to N-(heteroaryl)-4,5-unsubstituted pyrroles. Substrate scope of the pyrrole synthesis. Synthesis of N-heterocyclic pyrroles
PDF
Album
Supp Info
Letter
Published 30 Nov 2020

Synthesis of imidazo[1,5-a]pyridines via cyclocondensation of 2-(aminomethyl)pyridines with electrophilically activated nitroalkanes

  • Dmitrii A. Aksenov,
  • Nikolai A. Arutiunov,
  • Vladimir V. Maliuga,
  • Alexander V. Aksenov and
  • Michael Rubin

Beilstein J. Org. Chem. 2020, 16, 2903–2910, doi:10.3762/bjoc.16.239

Graphical Abstract
  • imidazo[1,5-a]pyridine core is also considered to be one of the privileged pharmacophoric scaffolds and can be found in many biologically active compounds, for example, the potent antitumor agent C 1311 inhibiting topoisomerase II [4][5][6][7][8][9] or pirmagrel, a cytotoxic immunosuppressant and DNA
  • , 1466, 1436, 1423, 1273, 1208, 1129, 1069 cm−1; HRESIMS (TOF) m/z: [M + H]+ calcd for C12H10BrN2O, 276.9971; found, 276.9974. Biologically active imidazo[1,5-a]pyridines. Activation of nitroalkanes towards nucleophilic attack by amines. Mechanistic rationale. Reaction of the N-tosylate 17 with
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2020

Ring-closing metathesis of prochiral oxaenediynes to racemic 4-alkenyl-2-alkynyl-3,6-dihydro-2H-pyrans

  • Viola Kolaříková,
  • Markéta Rybáčková,
  • Martin Svoboda and
  • Jaroslav Kvíčala

Beilstein J. Org. Chem. 2020, 16, 2757–2768, doi:10.3762/bjoc.16.226

Graphical Abstract
  • RCEYM of enynes leads to products containing a conjugated double bond system, which can undergo a Diels–Alder reaction and further can be employed in the synthesis of biologically active compounds, as for example cacospongiolide B [38], norsalvinorin A [39] or salvinorin A [40]. The substituted
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2020

Synthesis of purines and adenines containing the hexafluoroisopropyl group

  • Viacheslav Petrov,
  • Rebecca J. Dooley,
  • Alexander A. Marchione,
  • Elizabeth L. Diaz,
  • Brittany S. Clem and
  • William Marshall

Beilstein J. Org. Chem. 2020, 16, 2739–2748, doi:10.3762/bjoc.16.224

Graphical Abstract
  • fluorine and polyfluoroalkyl substituents into organic molecules remains a challenging problem in the synthesis of fluorinated biologically active compounds, especially larger moieties, such as C2F5, CF(CF3)2, and CH(CF3)2. With respect to the hexafluoroisopropyl group, the methods are limited to a
  • ]. Benzimidazoles are an important class of organic materials, and many derivatives of these group are biologically active [6][7][8][9]. The benzimidazole moiety “ […] is isosteric with indole and purine nuclei, which are present in a number of fundamental cellular components and bioactive compounds. Indeed, a
  • this method to the modification of biologically active imidazoles, such as adenine and purine derivatives. The results of this study are reported in this article. Results and Discussion Despite the presence of two electron-withdrawing nitrogen atoms in the aromatic ring, purine (2) was found to react
PDF
Album
Full Research Paper
Published 11 Nov 2020

Selective and reversible 1,3-dipolar cycloaddition of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with 1,3-diphenylprop-2-en-1-ones under microwave irradiation

  • Alexander P. Molchanov,
  • Mariia M. Efremova,
  • Mariya A. Kryukova and
  • Mikhail A. Kuznetsov

Beilstein J. Org. Chem. 2020, 16, 2679–2686, doi:10.3762/bjoc.16.218

Graphical Abstract
  • ]. A wide range of pharmaceuticals, agrochemicals, and other biologically active compounds are prepared using different types of (3 + n) cycloadditions, mainly with alkenes and alkynes [3][4][5][6][7]. For example, N,N'-cyclic azomethine imines are precursors of biologically active bicyclic
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2020

Access to highly substituted oxazoles by the reaction of α-azidochalcone with potassium thiocyanate

  • Mysore Bhyrappa Harisha,
  • Pandi Dhanalakshmi,
  • Rajendran Suresh,
  • Raju Ranjith Kumar and
  • Shanmugam Muthusubramanian

Beilstein J. Org. Chem. 2020, 16, 2108–2118, doi:10.3762/bjoc.16.178

Graphical Abstract
  • ) using ethyl acetate/petroleum ether mixture to afford product 4. Examples of biologically active oxazole and aminothiazole scaffolds. Large-scale synthesis of 3i. a) At the start of the reaction, b) after the reaction. ORTEP diagram of compound 5. X-ray crystal structure of 4h. Strategies for the
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2020

Metal-free synthesis of phosphinoylchroman-4-ones via a radical phosphinoylation–cyclization cascade mediated by K2S2O8

  • Qiang Liu,
  • Weibang Lu,
  • Guanqun Xie and
  • Xiaoxia Wang

Beilstein J. Org. Chem. 2020, 16, 1974–1982, doi:10.3762/bjoc.16.164

Graphical Abstract
  • under metal-free conditions and uses cheap K2S2O8 as oxidant with easy handling and a broad substrate scope. The reaction proceeds through a radical phosphinoylation–cyclization via a tandem C–P and C–C-bond formation. Biologically active compounds featuring the chroman-4-one framework. X-ray structure
PDF
Album
Supp Info
Letter
Published 12 Aug 2020

Synthesis of 3(2)-phosphonylated thiazolo[3,2-a]oxopyrimidines

  • Ksenia I. Kaskevich,
  • Anastasia A. Babushkina,
  • Vladislav V. Gurzhiy,
  • Dmitrij M. Egorov,
  • Nataly I. Svintsitskaya and
  • Albina V. Dogadina

Beilstein J. Org. Chem. 2020, 16, 1947–1954, doi:10.3762/bjoc.16.161

Graphical Abstract
  • containing practically significant heteroaromatic rings and a biologically active and hydrolysis-resistant phosphonate group, as it has been reported that the combination of several pharmacophore fragments in one molecule can lead to a synergistic increase in biological activity or an additional variety of
PDF
Album
Supp Info
Letter
Published 10 Aug 2020

Regiodivergent synthesis of functionalized pyrimidines and imidazoles through phenacyl azides in deep eutectic solvents

  • Paola Vitale,
  • Luciana Cicco,
  • Ilaria Cellamare,
  • Filippo M. Perna,
  • Antonio Salomone and
  • Vito Capriati

Beilstein J. Org. Chem. 2020, 16, 1915–1923, doi:10.3762/bjoc.16.158

Graphical Abstract
  • is an ongoing synthetic endeavor as these scaffolds are ubiquitous motifs in many biologically active compounds and pharmaceuticals. In this context, in the last decades, the so-called deep eutectic solvents (DESs) have received an increasing attention due to their biodegradability, high thermal
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • of C–H bond functionalization reactions encompasses also direct diversification of heteroaromatic compounds. Aromatic heterocycles are key molecular motifs in natural products and biologically active compounds and thus, the development of synthetic methods allowing their site-selective C–H
PDF
Album
Review
Published 21 Jul 2020

Et3N/DMSO-supported one-pot synthesis of highly fluorescent β-carboline-linked benzothiophenones via sulfur insertion and estimation of the photophysical properties

  • Dharmender Singh,
  • Vipin Kumar and
  • Virender Singh

Beilstein J. Org. Chem. 2020, 16, 1740–1753, doi:10.3762/bjoc.16.146

Graphical Abstract
  • biologically active alkaloids. Proposed reaction mechanism. Fluorescence spectra of 2aA–nA, 2bB, 2hB, and 6C. Fluorescence spectra of 4aA–gA, and 4eB. Synthesis of β-carboline-linked 2-nitrochalcones. Synthesis of β-carboline-linked benzothiophenone frameworks. Comparison of outcome of one-pot vs two-pot
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2020

Microwave-assisted efficient one-pot synthesis of N2-(tetrazol-5-yl)-6-aryl/heteroaryl-5,6-dihydro-1,3,5-triazine-2,4-diamines

  • Moustafa Sherief Moustafa,
  • Ramadan Ahmed Mekheimer,
  • Saleh Mohammed Al-Mousawi,
  • Mohamed Abd-Elmonem,
  • Hesham El-Zorba,
  • Afaf Mohamed Abdel Hameed,
  • Tahany Mahmoud Mohamed and
  • Kamal Usef Sadek

Beilstein J. Org. Chem. 2020, 16, 1706–1712, doi:10.3762/bjoc.16.142

Graphical Abstract
  • specific biological target such as a receptor or an enzyme. A promising strategy that overcomes the classical one-target, one-molecule approach is the design of stable chemical hybrid molecules which are a combination of two biologically active scaffolds acting at different targets [20][21][22][23][24
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2020

Pauson–Khand reaction of fluorinated compounds

  • Jorge Escorihuela,
  • Daniel M. Sedgwick,
  • Alberto Llobat,
  • Mercedes Medio-Simón,
  • Pablo Barrio and
  • Santos Fustero

Beilstein J. Org. Chem. 2020, 16, 1662–1682, doi:10.3762/bjoc.16.138

Graphical Abstract
  • transformations to yield more complex biologically active molecules. Despite the increasing availability of fluorinated building blocks and methodologies to incorporate fluorine in compounds with biological interest, there have been few significant advances focused on the fluoro-Pauson–Khand reaction, both in the
PDF
Album
Review
Published 14 Jul 2020
Other Beilstein-Institut Open Science Activities