Search results

Search for "IR" in Full Text gives 1063 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Recent advances in the application of isoindigo derivatives in materials chemistry

  • Andrei V. Bogdanov and
  • Vladimir F. Mironov

Beilstein J. Org. Chem. 2021, 17, 1533–1564, doi:10.3762/bjoc.17.111

Graphical Abstract
  • application of these materials. Thus, Gu et al., using the example of a donor–acceptor–donor (D–A–D) polymer 64 containing a 3,4-ethylenedioxythiophene fragment, demonstrated the possibility of creating flexible IR displays based on isoindigo [112]. This polymer showed very good electrochromic characteristics
PDF
Album
Review
Published 06 Jul 2021

Breaking paracyclophane: the unexpected formation of non-symmetric disubstituted nitro[2.2]metaparacyclophanes

  • Suraj Patel,
  • Tyson N. Dais,
  • Paul G. Plieger and
  • Gareth J. Rowlands

Beilstein J. Org. Chem. 2021, 17, 1518–1526, doi:10.3762/bjoc.17.109

Graphical Abstract
  • , J = 7.2, 8.5, 13.3 Hz, 1H, H-1b); 13C NMR (126 MHz, CDCl3) δ (ppm) 149.0, 142.2, 139.9, 139.5, 137.9, 137.5, 136.6, 133.3, 133.3, 132.6, 130.1, 129.7, 36.2, 35.1, 35.0, 34.6; IR: 3009, 2928, 1694, 1531, 1516, 1336, 808 cm−1; mp: 158–160 °C; Rf: 0.43 (10% EtOAc, 90% hexane). Data matches previous
  • ; ESIMS (m/z): [M]– 264, 252, 223, 151, 89; IR: 3306, 2917, 2850, 1738, 1534, 1261 cm−1; mp: 152–155 °C; Rf: 0.40, (10% EtOAc, 90% hexane). (4(16)Z)-8-Hydroxy-6-nitrotricyclo[9.2.2.14,8]hexadeca-1(13),4,(16),6,11,14-pentaen-5-one (6) 1H NMR (500 MHz, DMSO-d6) δ (ppm) 7.48 (d, J = 8.1 Hz, 1H, H-13), 7.29
  • , 2 × CH), 1.69–1.63 (m, 1H, CH); 13C NMR (126 MHz, DMSO-d6) δ (ppm) 177.3, 147.9, 147.4, 142.7, 141.1, 137.7, 130.6, 130.1, 129.3, 129.2, 68.2, 43.4, 33.4, 32.2, 30.2; HRMS-EI m/z: [M]– calcd for C16H15NO4, 284.0917; found, 284.0928; ESIMS (m/z): [M + Na]+ 309, 287, 269, 240, 215, 194, 73; IR: 3453
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

A straightforward conversion of 1,4-quinones into polycyclic pyrazoles via [3 + 2]-cycloaddition with fluorinated nitrile imines

  • Greta Utecht-Jarzyńska,
  • Karolina Nagła,
  • Grzegorz Mlostoń,
  • Heinz Heimgartner,
  • Marcin Palusiak and
  • Marcin Jasiński

Beilstein J. Org. Chem. 2021, 17, 1509–1517, doi:10.3762/bjoc.17.108

Graphical Abstract
  • , HMQC, and HMBC). The UV–vis spectra were measured on a PerkinElmer Lambda 45 spectrophotometer in spectroscopic grade CH2Cl2. MS (ESI) were performed with a Varian 500-MS LC Ion Trap. The IR spectra were measured neat with an Agilent Cary 630 FTIR spectrometer. Elemental analyses were obtained with a
  • , 133.4 (2i-C), 134.2, 135.0 (CH each), 138.1, 139.0 (2i-C), 140.8 (q, 2JC,F = 40.8 Hz, C(3)), 174.5, 177.3 (2C=O); 19F NMR (CDCl3, 565 MHz) δ −62.82 ppm; UV–vis (CH2Cl2) λmax (log ε) 247 (4.45), 266 (4.24), 275 (4.25), 340 (3.72), 409 (2.61), 496 nm (1.70); IR (neat) νmax: 3082, 1677 (C=O), 1588, 1521
  • ) δ 13.6, 13.9, 14.2, 14.6, 20.8 (5Me), 64.8, 80.1 (2i-C), 120.7 (q,1JC,F = 271.1 Hz, CF3), 120.7, 129.6 (2CH each), 134.8 (i-C), 140.0 (q, 2JC,F = 36.3 Hz, C(3)), 139.5, 146.9, 147.1 (3i-C), 192.6, 195.1 (2C=O) ppm; 19F NMR (CDCl3, 565 MHz) δ −61.45 ppm; IR (neat) νmax: 2930, 1677 (C=O), 1513, 1506
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2021

Free-radical cyclization approach to polyheterocycles containing pyrrole and pyridine rings

  • Ivan P. Mosiagin,
  • Olesya A. Tomashenko,
  • Dar’ya V. Spiridonova,
  • Mikhail S. Novikov,
  • Sergey P. Tunik and
  • Alexander F. Khlebnikov

Beilstein J. Org. Chem. 2021, 17, 1490–1498, doi:10.3762/bjoc.17.105

Graphical Abstract
  • complexes, Au(I) [20], Ir(III) [21] and Eu(III) [22] (Scheme 1). According to the calculations, the isomeric pyrido[2,1-a]pyrrolo[3,4-c]isoquinoline system B (Scheme 1) should have no less interesting photophysical properties [17], than skeleton A but its synthesis is still a challenge. In particular
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2021
Graphical Abstract
  • mixture of EtOAc and petroleum ether. Characterization of the intermediates and final compounds were performed using 1H and 13C NMR, mass spectrometry and IR spectroscopy. FTIR spectra of the compounds were recorded on an Aligent FTIR spectrometer (ATR module of Cary 630 FTIR, Agilent Technologies) from
  • , 149.65, 147.08, 145.20, 137.48, 124.91, 122.66, 117.60, 56.57, 36.44, 26.54, 22.63, 13.71; IR (KBr): 2957, 2925, 2858, 1742, 1594, 1517, 1458 cm−1; MS (m/z): 814.00. Synthesis of 5,5,10,10,15,15-hexabutyl-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene-2,7,12-triamine (4): To a 100 mL round bottom flask
  • (d, J = 8.1 Hz, 3H), 3.69 (b–NH, 6H), 2.91–2.81 (m, 6H), 1.96–1.87 (m, 6H), 0.94–0.60 (m, 12H), 0.56–0.42 (m, 30H); 13C NMR (75 MHz, CDCl3) δ 155.72, 144.69, 141.19, 138.07, 132.30, 125.41, 113.23, 109.04, 55.05, 36.85, 26.50, 22.95, 13.91; IR (KBr): 3369, 3012, 2953, 2922, 2855, 1619, 1584, 1485 cm
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2021

Fritsch–Buttenberg–Wiechell rearrangement of magnesium alkylidene carbenoids leading to the formation of alkynes

  • Tsutomu Kimura,
  • Koto Sekiguchi,
  • Akane Ando and
  • Aki Imafuji

Beilstein J. Org. Chem. 2021, 17, 1352–1359, doi:10.3762/bjoc.17.94

Graphical Abstract
  • the products that absorbed UV light were detected by UV irradiation. The melting points were measured using a Yanaco MP-S3 apparatus and are uncorrected. IR spectra were recorded on a Perkin–Elmer Frontier FTIR in the ATR mode. NMR spectra were recorded in CDCl3 solutions using a JEOL JNM-LA 300, JEOL
  • water (50 mL), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc 1:1) to give the alcohol [6.90 g, 16.7 mmol, 83%, Rf = 0.45 (hexane/EtOAc 1:1)] as a single diastereomer; yellow solid; mp 102.5–104.0 °C; IR (ATR
  • (hexane/EtOAc) to give sulfoxide 2a [1.38 g, 3.34 mmol, 87%, Rf = 0.50 (hexane/EtOAc 1:1)]. Colorless solid; mp 140.2–141.0 °C; IR (ATR) 3063, 3032, 3024, 2955, 2932, 2908, 2837, 1603, 1577, 1506, 1462, 1306, 1246, 1172, 1082, 1049, 1031, 829 cm−1; 1H NMR (399 MHz, CDCl3) δ 2.42 (s, 3H), 3.79 (s, 3H
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2021

Icilio Guareschi and his amazing “1897 reaction”

  • Gian Cesare Tron,
  • Alberto Minassi,
  • Giovanni Sorba,
  • Mara Fausone and
  • Giovanni Appendino

Beilstein J. Org. Chem. 2021, 17, 1335–1351, doi:10.3762/bjoc.17.93

Graphical Abstract
  • critical for the identification of functional groups, being the equivalent of what next became IR spectroscopy. Schiff himself had contributed to this development with the discovery of the sulfite-decolorized fuchsine test for aldehydes and with the popularization of the biuret test for peptide bonds. It
PDF
Album
Supp Info
Review
Published 25 May 2021

Photoinduced post-modification of graphitic carbon nitride-embedded hydrogels: synthesis of 'hydrophobic hydrogels' and pore substructuring

  • Cansu Esen and
  • Baris Kumru

Beilstein J. Org. Chem. 2021, 17, 1323–1334, doi:10.3762/bjoc.17.92

Graphical Abstract
  • , respectively, and left overnight. Released contents of each cation were analyzed via ICP-OES. Characterization: Fourier transform infrared (FTIR) spectra were acquired on a Nicolet iS 5 FT-IR spectrometer. Solid-state ultraviolet−visible (UV−vis) spectroscopy for grinded samples was performed via a Cary 500
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Heterogeneous photocatalytic cyanomethylarylation of alkenes with acetonitrile: synthesis of diverse nitrogenous heterocyclic compounds

  • Guanglong Pan,
  • Qian Yang,
  • Wentao Wang,
  • Yurong Tang and
  • Yunfei Cai

Beilstein J. Org. Chem. 2021, 17, 1171–1180, doi:10.3762/bjoc.17.89

Graphical Abstract
  • ). Traditional g-C3N4 exhibited a low catalytic activity for this transformation (Table 1, entry 6). Switching from CN-K to a homogeneous organo photocatalyst such as eosin Y and 4CzIPN, led to lower yields of the desired product (Table 1, entries 7 and 8). The expensive Ru/Ir-based metal complexes gave similar
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2021

Synthesis of functionalized imidazo[4,5-e]thiazolo[3,2-b]triazines by condensation of imidazo[4,5-e]triazinethiones with DMAD or DEAD and rearrangement to imidazo[4,5-e]thiazolo[2,3-c]triazines

  • Alexei N. Izmest’ev,
  • Dmitry B. Vinogradov,
  • Natalya G. Kolotyrkina,
  • Angelina N. Kravchenko and
  • Galina A. Gazieva

Beilstein J. Org. Chem. 2021, 17, 1141–1148, doi:10.3762/bjoc.17.87

Graphical Abstract
  • nitrogen atom N(4) [25] to afford the product 5. The structures of compounds 4a–n and 5a–n were elucidated by IR, 1H and 13C NMR, and HRMS spectral data. There are downfield shifts of the NH group proton signal from 6.9–7.2 to 8.0–8.4 ppm in the 1H NMR spectra of angular structures 5 in comparison to the
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2021

Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications

  • Christopher Liczner,
  • Kieran Duke,
  • Gabrielle Juneau,
  • Martin Egli and
  • Christopher J. Wilds

Beilstein J. Org. Chem. 2021, 17, 908–931, doi:10.3762/bjoc.17.76

Graphical Abstract
PDF
Album
Review
Published 28 Apr 2021

Highly regio- and stereoselective phosphinylphosphination of terminal alkynes with tetraphenyldiphosphine monoxide under radical conditions

  • Dat Phuc Tran,
  • Yuki Sato,
  • Yuki Yamamoto,
  • Shin-ichi Kawaguchi,
  • Shintaro Kodama,
  • Akihiro Nomoto and
  • Akiya Ogawa

Beilstein J. Org. Chem. 2021, 17, 866–872, doi:10.3762/bjoc.17.72

Graphical Abstract
  • BioSpin Ascend 400 spectrometer (162 MHz). 19F NMR spectra were recorded on a Bruker BioSpin Ascend 400 spectrometer (377 MHz). IR spectra were recorded on JASCO FT/IR-680Plus instrument. High-resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF II ESI(+)/TOF instrument. General procedure for
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
  • organic synthesis (2000–10), witnessed microwaves with optic fibre or IR pyrometers for temperature detection along with specific glass reaction vessels that can withstand pressure and temperature in the reaction generated especially by low boiling solvents. Microwave-assisted heating reduces reaction
PDF
Album
Review
Published 19 Apr 2021

Synthesis of β-triazolylenones via metal-free desulfonylative alkylation of N-tosyl-1,2,3-triazoles

  • Soumyaranjan Pati,
  • Renata G. Almeida,
  • Eufrânio N. da Silva Júnior and
  • Irishi N. N. Namboothiri

Beilstein J. Org. Chem. 2021, 17, 762–770, doi:10.3762/bjoc.17.66

Graphical Abstract
  • data (IR, 1H, 13C and Mass) which were further unambiguously established by single crystal X-ray analysis of a representative compound 3e (Scheme 2 and Supporting Information File 3). Although triazole 1a reacted with cyclohexanedione 2a (vide supra), its reaction with dimedone 2d provided a complex
PDF
Album
Supp Info
Letter
Published 31 Mar 2021

Synthesis, structural characterization, and optical properties of benzo[f]naphtho[2,3-b]phosphoindoles

  • Mio Matsumura,
  • Takahiro Teramoto,
  • Masato Kawakubo,
  • Masatoshi Kawahata,
  • Yuki Murata,
  • Kentaro Yamaguchi,
  • Masanobu Uchiyama and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2021, 17, 671–677, doi:10.3762/bjoc.17.56

Graphical Abstract
  • and IR). All the corresponding aromatic proton and carbon atoms on the two naphthalene rings were equivalent in the 1H and 13C NMR spectra of phospholes. These results show that all phosphole derivatives had a symmetric structure in solution. The 31P NMR spectra of these show the typical low-field
PDF
Album
Supp Info
Letter
Published 05 Mar 2021

Synthesis and properties of oligonucleotides modified with an N-methylguanidine-bridged nucleic acid (GuNA[Me]) bearing adenine, guanine, or 5-methylcytosine nucleobases

  • Naohiro Horie,
  • Takao Yamaguchi,
  • Shinji Kumagai and
  • Satoshi Obika

Beilstein J. Org. Chem. 2021, 17, 622–629, doi:10.3762/bjoc.17.54

Graphical Abstract
  • , CDCl3 (δ = 77.0 ppm) for 13C NMR, and 5% H3PO4 (δ = 0 ppm) for 31P NMR. Infrared (IR) spectra were recorded using a JASCO FT/IR-4200 spectrometer. The optical rotation was recorded using a JASCO P-2200 instrument. A MALDI–TOF mass spectrometer (SpiralTOF JMS-S3000) was used to measure the mass spectra
  • (698 mg, 72%) as a yellow solid substance. 2a: −26.4 (c 1.0, CHCl3); IR (KBr): 2999, 2952, 2837, 1696, 1606, 1509, 1451, 1410, 1297, 1251, 1177, 1155, 1074, 1035 cm−1; 1H NMR (CDCl3) δ 2.00 (s, 3H), 2.80 (s, 3H), 3.48, 3.57 (AB, J = 10.7 Hz, 2H), 3.67 (s, 2H), 3.74 (s, 3H), 3.74 (s, 3H), 4.37 (s, 1H
  • 1.0, CHCl3); IR (KBr): 3350, 2971, 2837, 1750, 1712, 1587, 1509, 1444, 1411, 1335, 1284, 1249, 1226, 1176, 1116, 1068, 1035 cm−1; 1H NMR (CDCl3) δ 1.23 (d, J = 6.5 Hz, 3H), 1.25 (d, J = 6.2 Hz, 3H), 2.05 (s, 3H), 2.55–2.66 (m, 1H), 3.05 (d, J = 4.2 Hz, 3H), 3.48, 3.53 (AB, J = 10.8 Hz, 2H), 3.59, 3.74
PDF
Supp Info
Full Research Paper
Published 04 Mar 2021

Valorisation of plastic waste via metal-catalysed depolymerisation

  • Francesca Liguori,
  • Carmen Moreno-Marrodán and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2021, 17, 589–621, doi:10.3762/bjoc.17.53

Graphical Abstract
  • supported metal species (Ru, Ir), due to the ability to activate molecular hydrogen, functioning as redox centres. The mechanisms of the metal-catalysed solvolytic reactions of plastics are all very similar and typical of conventional organic processes: a metal ion acts as Lewis acid centre for the
  • depolymerisation of PET flakes from various sources (water bottles, dyed soda bottles, pillow filling, yoghurt pots). However, the role of HNTf2 was unclear. In a different approach, hydrogenolysis-like depolymerisation was achieved through a hydrosilylation strategy, using the pincer Ir(III) complex [Ir(POCOP)H
  • reaction conditions, PLA could be converted to the corresponding silyl ether in 92% yield, propane and silicon byproducts (8%) using the above mentioned Brookhart pincer complex [Ir(POCOP)H(THF)][B(C6F5)4] shown in Scheme 3, an excess of Et3SiH and chlorobenzene solvent at 90 °C (Scheme 13) [193]. The use
PDF
Album
Review
Published 02 Mar 2021

Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents

  • Anuj Kumar Chhalodia and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 569–580, doi:10.3762/bjoc.17.51

Graphical Abstract
  • signal: D2O δ = 4.79 ppm, CDCl3 δ = 7.26 ppm, d6-DMSO δ = 2.50 ppm; 13C NMR: CDCl3 δ = 77.16 ppm, d6-DMSO δ = 39.52 ppm). The coupling constants are given in Hz. IR spectra were recorded on a Bruker α spectrometer equipped with a diamond-ATR probe. The relative intensities of signals are indicated by w
  • , 7.56 mmol, 30%) as pale yellow oil. TLC Rf 0.44 (cyclohexane/EtOAc 10:3); IR (diamond-ATR) ν̃: 2998 (w), 2952 (w), 2845 (w), 2256 (w), 1730 (m), 1436 (w), 1354 (w), 1240 (w), 1215(w), 1195 (w), 1171 (w), 1139 (w), 1046 (w), 1017 (w), 979 (w), 907 (w), 822 (w), 726 (m), 648 (w), 435 (w) cm−1; 1H NMR
  • water and extracted with ethyl acetate. The extracts were dried with MgSO4 and concentrated in vacuo. The obtained residue was purified by silica gel column chromatography (cyclohexane/EtOAc 5:1) to give compound 26 (0.23 g, 1.20 mmol, 57%). TLC Rf = 0.72 (cyclohexane/EtOAc = 1:1); IR (diamond-ATR) ν̃
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2021

Metal-free visible-light-enabled vicinal trifluoromethyl dithiolation of unactivated alkenes

  • Xiaojuan Li,
  • Qiang Zhang,
  • Weigang Zhang,
  • Jinzhu Ma,
  • Yi Wang and
  • Yi Pan

Beilstein J. Org. Chem. 2021, 17, 551–557, doi:10.3762/bjoc.17.49

Graphical Abstract
  • photocatalyst and KH2PO4 (10 mol %) as the base (Table 1, entry 1). The yield of 4a was not increased when 2 equiv of K2HPO4 were used (Table 1, entry 2) and no difunctionalized product was observed with DMA as the solvent (Table 1, entry 4). The employment of KH2PO4 as base and [Ir(dF(CF3)ppy)2(dtbby)]PF6 as
PDF
Album
Supp Info
Full Research Paper
Published 24 Feb 2021

Synthesis of (Z)-3-[amino(phenyl)methylidene]-1,3-dihydro-2H-indol-2-ones using an Eschenmoser coupling reaction

  • Lukáš Marek,
  • Lukáš Kolman,
  • Jí Váňa,
  • Jan Svoboda and
  • Jí Hanusek

Beilstein J. Org. Chem. 2021, 17, 527–539, doi:10.3762/bjoc.17.47

Graphical Abstract
  • acid (DHB) or (2-methylprop-2-en-1-yliden)malononitrile (DCTB) as the MALDI matrix. Elemental analyses were performed on a Flash 2000 Organic Elemental Analyser (Thermofisher). For samples containing chlorine mercurimetric titration was used. IR spectra were recorded on a Nicolet iS50 equipped with an
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2021

Identification of volatiles from six marine Celeribacter strains

  • Anuj Kumar Chhalodia,
  • Jan Rinkel,
  • Dorota Konvalinkova,
  • Jörn Petersen and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 420–430, doi:10.3762/bjoc.17.38

Graphical Abstract
  • Bruker (Billerica, USA) Avance III HD Ascend (500 MHz) spectrometer. Solvent peaks were used for referencing (1H NMR: CDCl3 residual proton signal δ = 7.26 ppm, 13C NMR: CDCl3 δ = 77.16 ppm) [65]. Multiplicities are indicated by s (singlet) and d (doublet), coupling constants J are given in Hz. IR
  • chromatography (cyclohexane/ethyl acetate 1:1) to give 41 as a colorless solid (0.82 g, 3.85 mmol, 64%). Rf 0.60 (cyclohexane/ethyl acetate 5:1; TLC visualized with UV illumination at 366 nm); GC (HP-5MS): I = 1854; IR (diamond-ATR) ν̃: 3060 (s), 2916 (s), 1425 (w), 1310 (s), 1236 (s), 1005 (w), 756 (w), 431 (s
  • (cyclohexane/ethyl acetate 1:1); GC (HP-5MS): I = 1200; IR (diamond-ATR) ν̃: 2982 (w), 2927 (w),1695 (m), 1569 (m), 1434 (w), 1374 (w), 1300 (w), 1266 (w), 1213 (m), 1166 (s), 1095 (w), 1033 (w), 986 (w), 961 (w), 800 (w), 727 (w), 687 (w) cm−1; 1H NMR (700 MHz, CDCl3, 298 K) δ 7.04 (d, J = 10.14 Hz, 1H, CH
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

1,2,3-Triazoles as leaving groups: SNAr reactions of 2,6-bistriazolylpurines with O- and C-nucleophiles

  • Dace Cīrule,
  • Irina Novosjolova,
  • Ērika Bizdēna and
  • Māris Turks

Beilstein J. Org. Chem. 2021, 17, 410–419, doi:10.3762/bjoc.17.37

Graphical Abstract
  • deprotonates purine C(8)–H, thus suspending the SNAr process. The structures of C6-substituted products 5a–d were elucidated by NMR and IR analysis. These compounds can exist as either C–H acids (A) or N–H acids (B), but dimedone conjugate 5b may possess also an enol form C (Figure 1). During the structural
  • studies of cyano group containing products 5a and 5c the cross signals for the C(2’’)–H system were not found using HSQC spectra, excluding the existence of C–H tautomeric forms A. In addition, IR analysis (KBr tablet) indicated absorption bands of cyano groups at 2205 and 2170 cm−1 for product 5a and at
  • used in the reactions were dried with standard drying agents and freshly distilled prior to use. Commercial reagents were used as received. IR spectra were recorded in KBr tablets with a Perkin–Elmer Spectrum BX FTIR spectrometer (4000–450 cm−1). Wavelengths are given in cm−1. For HPLC analysis an
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

Helicene synthesis by Brønsted acid-catalyzed cycloaromatization in HFIP [(CF3)2CHOH]

  • Takeshi Fujita,
  • Noriaki Shoji,
  • Nao Yoshikawa and
  • Junji Ichikawa

Beilstein J. Org. Chem. 2021, 17, 396–403, doi:10.3762/bjoc.17.35

Graphical Abstract
  • , 129.5, 129.6, 130.0, 130.7, 131.2, 131.6, 133.8, 134.0, 140.2, 140.9, 141.4; IR (neat) ν: 3055, 3020, 2976, 2883, 1471, 1442, 1433, 1398, 1194, 1130, 1038, 1009, 943, 872, 837, 822, 752, 706, 621, 573, 538 cm−1; HRMS (EI) m/z: [M]+ calcd. for C26H26O4, 402.1826; found, 402.1815. Gram-scale synthesis
  • , 124.8, 125.2, 126.8, 129.0, 129.05, 129.13, 129.9, 131.0, 133.8, 134.5, 138.8, 142.6; IR (neat) ν: 3053, 2966, 2883, 1489, 1396, 1132, 1043, 984, 831, 756 cm–1; HRMS (APCI+) m/z: [M + H]+ calcd. for C30H29O4, 453.2060; found, 453.2081. Gram-scale synthesis: Compound 4b was also prepared by the method
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2021

Mesoionic tetrazolium-5-aminides: Synthesis, molecular and crystal structures, UV–vis spectra, and DFT calculations

  • Vladislav A. Budevich,
  • Sergei V. Voitekhovich,
  • Alexander V. Zuraev,
  • Vadim E. Matulis,
  • Vitaly E. Matulis,
  • Alexander S. Lyakhov,
  • Ludmila S. Ivashkevich and
  • Oleg A. Ivashkevich

Beilstein J. Org. Chem. 2021, 17, 385–395, doi:10.3762/bjoc.17.34

Graphical Abstract
  • information Unless otherwise noted, all reagents were obtained from commercial sources and used without further purification. The UV–vis spectra were recorded on a Merertech SP-8001-6C UV–visible spectrophotometer. 1H and 13C NMR spectra were recorded on a Bruker AVANCE 500 MHz spectrometer. IR spectra were
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2021
Other Beilstein-Institut Open Science Activities