Search results

Search for "peroxide" in Full Text gives 236 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of ethoxy dibenzooxaphosphorin oxides through palladium-catalyzed C(sp2)–H activation/C–O formation

  • Seohyun Shin,
  • Dongjin Kang,
  • Woo Hyung Jeon and
  • Phil Ho Lee

Beilstein J. Org. Chem. 2014, 10, 1220–1227, doi:10.3762/bjoc.10.120

Graphical Abstract
  • )arylphosphonates by using L-Selectride (Scheme 2). The C–H activation/C–O formation of 2-(phenyl)phenylphosphonic acid monoethyl ester (1a) was examined with a variety of oxidants and bases in the presence of Pd(OAc)2. A multitude of oxidants such as K2S2O8, BQ, benzoyl peroxide, PhI(TFA)2, Cu(OAc)2, CuCl2, CuBr
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2014

Nonanebis(peroxoic acid): a stable peracid for oxidative bromination of aminoanthracene-9,10-dione

  • Vilas Venunath Patil and
  • Ganapati Subray Shankarling

Beilstein J. Org. Chem. 2014, 10, 921–928, doi:10.3762/bjoc.10.90

Graphical Abstract
  • at the expense of 1.25 equivalents of peroxide in 2 h (Table 2, entry 15). No product formation was observed in the absence of peracid (Table 2, entry 16). To confirm the efficiency of nonanebis(peroxoic acid), bromination was carried out using commercially available oxidants. The results obtained
  • , Oxone (Table 3, entry 2) shows 94% conversion of 1a in 2 h. In case of 50% Hydrogen peroxide (Table 3, entry 3), more than 7 equivalents of oxidant were required with successive addition. The urea hydrogen peroxide shows moderate conversion in 20 h (Table 3, entry 6). The other diperoxy acids like
  • was surmised that in the presence of oxidant these substrates form a diimine type product (similar to oxidative hair dye mechanism) [33], which makes the ring unreactive towards electrophilic substitution. Since Oxone and 50% hydrogen peroxide showed good results with substrate 1a, we have checked the
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2014
Graphical Abstract
  • accomplished by oxidation with hydrogen peroxide in analogy to literature [11]. As expected, the MALDI–TOF mass spectrum for 8bOx showed only one series of peaks, which was shifted by 16 Dalton in comparison to the origin series of peaks (see Figure 3). The FTIR spectrum showed a decrease of transmission at a
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2014

Boron-substituted 1,3-dienes and heterodienes as key elements in multicomponent processes

  • Ludovic Eberlin,
  • Fabien Tripoteau,
  • François Carreaux,
  • Andrew Whiting and
  • Bertrand Carboni

Beilstein J. Org. Chem. 2014, 10, 237–250, doi:10.3762/bjoc.10.19

Graphical Abstract
  • diastereomers (Scheme 25). No formation of products resulting from a first cycloaddition of the 1,3-butadienyl moiety was observed when these reactions were conducted in a tandem one-pot process. Various transformations were further carried out as oxidation with hydrogen peroxide or addition to aldehydes that
PDF
Album
Review
Published 22 Jan 2014

Synthesis and biological activity of N-substituted-tetrahydro-γ-carbolines containing peptide residues

  • Nadezhda V. Sokolova,
  • Valentine G. Nenajdenko,
  • Vladimir B. Sokolov,
  • Daria V. Vinogradova,
  • Elena F. Shevtsova,
  • Ludmila G. Dubova and
  • Sergey O. Bachurin

Beilstein J. Org. Chem. 2014, 10, 155–162, doi:10.3762/bjoc.10.13

Graphical Abstract
  • ] (Figure 1). These peptides were found to scavenge hydrogen peroxide and peroxynitrite and inhibit lipid peroxidation in vitro. By reducing mitochondrial reactive oxygen species, they inhibit MPT and cytochrome c release, thus protecting cells from oxidative cell death [11]. We expected that the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2014

Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products

  • Alexander O. Terent'ev,
  • Dmitry A. Borisov,
  • Vera A. Vil’ and
  • Valery M. Dembitsky

Beilstein J. Org. Chem. 2014, 10, 34–114, doi:10.3762/bjoc.10.6

Graphical Abstract
  • fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic
  • peroxides are based on three key reagents: oxygen, ozone, and hydrogen peroxide. These reagents and their derivatives are used in the main methods for the introduction of the peroxide group, such as the singlet-oxygen ene reaction with alkenes, the [4 + 2]-cycloaddition of singlet oxygen to dienes, the
  • Mukaiyama–Isayama peroxysilylation of unsaturated compounds, the Kobayashi cyclization, the nucleophilic addition of hydrogen peroxide to carbonyl compounds, the ozonolysis, and reactions with the involvement of peroxycarbenium ions. Each part of the review deals with a particular class of the above
PDF
Album
Review
Published 08 Jan 2014

Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

  • Grégory Landelle,
  • Armen Panossian,
  • Sergiy Pazenok,
  • Jean-Pierre Vors and
  • Frédéric R. Leroux

Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287

Graphical Abstract
  • functionalized in moderate yields by using sodium trifluoromethanesulfinate (Langlois’s reagent) and tert-butyl peroxide with 10 mol % of copper(II) triflate (Table 19). The supposed mechanism implies single electron transfers where t-BuOOH and Cu(OTf)2 serve as oxidants (Figure 9). Interestingly, Langlois’s
  • benzoyl peroxide (Scheme 8). The copper salts are believed to speed up the process by superimposing a redox chain to the radical chain [90]. 3.2.4 Trifluoromethylation of Csp2–H bonds by means of a nucleophilic CF3-source. To the best of our knowledge, there is only one report in the literature by L. Chu
  • ]thiazoles, imidazoles and polyfluorobenzenes (same system but di-tert-butyl peroxide as oxidant instead of air, Table 21); the nature of the copper(II) salt, the base and the oxidant had to be reassessed for the reaction of indoles (Cu(OH)2/1,10-phenanthroline/KF/Ag2CO3). Interestingly, the results obtained
PDF
Album
Review
Published 15 Nov 2013

Biosynthesis of rare hexoses using microorganisms and related enzymes

  • Zijie Li,
  • Yahui Gao,
  • Hideki Nakanishi,
  • Xiaodong Gao and
  • Li Cai

Beilstein J. Org. Chem. 2013, 9, 2434–2445, doi:10.3762/bjoc.9.281

Graphical Abstract
  • sanctum seeds) and investigated their synthetic application for L-glucose production from D-sorbitol (Scheme 13) [83][84]. Catalase could degrade the hydrogen peroxide byproduct and increase the conversion by removing the inhibition effect of hydrogen peroxide toward galactose oxidase and regenerating
PDF
Album
Review
Published 12 Nov 2013

The chemistry of isoindole natural products

  • Klaus Speck and
  • Thomas Magauer

Beilstein J. Org. Chem. 2013, 9, 2048–2078, doi:10.3762/bjoc.9.243

Graphical Abstract
  • -step sequence yielded azetidine 107. After oxidation with hydrogen peroxide, the resulting N-oxide cleanly underwent a [1,2]-Meisenheimer rearrangement upon heating in tetrahydrofuran. The so-formed azocine 108 was converted to amine 109 by hydrogenolysis of the N–O bond. Amide formation with acid
PDF
Album
Video
Review
Published 10 Oct 2013

Integrating reaction and analysis: investigation of higher-order reactions by cryogenic trapping

  • Skrollan Stockinger and
  • Oliver Trapp

Beilstein J. Org. Chem. 2013, 9, 1837–1842, doi:10.3762/bjoc.9.214

Graphical Abstract
  • reactions, so that the reaction kinetics can be investigated under comparable reaction conditions. So far, we investigated only first-order or pseudo-first-order reactions, where, for example, one reactant is used as a carrier gas, i.e., hydrogen in hydrogenation reactions or hydrogen peroxide as oxidant
PDF
Album
Letter
Published 10 Sep 2013

A practical synthesis of long-chain iso-fatty acids (iso-C12–C19) and related natural products

  • Mark B. Richardson and
  • Spencer J. Williams

Beilstein J. Org. Chem. 2013, 9, 1807–1812, doi:10.3762/bjoc.9.210

Graphical Abstract
  • triethylsilane and BF3·Et2O [53], affording 11. Oxidative cleavage of 11 with KMnO4/Bu4NBr [54] afforded iso-C12 acid 1. Alternatively, anti-Markovnikov hydration of 11, using I2/NaBH4 then hydrogen peroxide [55], afforded the alcohol 12, and oxidation of 12 with KMnO4/Bu4NBr afforded iso-C13 acid 2
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2013

The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow

  • Kimberley A. Roper,
  • Malcolm B. Berry and
  • Steven V. Ley

Beilstein J. Org. Chem. 2013, 9, 1781–1790, doi:10.3762/bjoc.9.207

Graphical Abstract
  • , dibenzoyl peroxide (9) was then added and the temperature maintained at 50 °C until this had completely dissolved. The mixture was then transferred to a glass column, the ends sealed with custom-made PTFE end pieces and heated to 92 °C for 48 hours using a Vapourtec R4 heating unit. This protocol can be
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2013

Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinyl carboxylic acids via a radical process

  • Jincan Zhao,
  • Hong Fang,
  • Jianlin Han and
  • Yi Pan

Beilstein J. Org. Chem. 2013, 9, 1718–1723, doi:10.3762/bjoc.9.197

Graphical Abstract
  • cycloalkanes were prepared based on a radical substitution of cyclohydrocarbon units to (E)-β-nitrostyrenes by using the radical initiator benzoyl peroxide [59]. Recently, the Liu group developed a copper-catalyzed decarboxylative coupling of vinylic carboxylic acids with simple alcohols and ethers in high
  • ) in the presence of iron(II) chloride tetrahydrate (20 mol %) and 2.0 equiv of di-tert-butyl peroxide (DTBP) as the oxidant at 120 °C under nitrogen, which provided the expected (E)-(2-cyclohexylvinyl)benzene (3a), but in a moderate 54% yield (Table 1, entry 1). The use of aqueous TBHP as oxidant
  • ) under a nitrogen atmosphere. Cycloalkane (2.0 mL, 15–25 mmol) and DTBP (di-tert-butyl peroxide, 0.6 mmol, 113 μL) were added under a nitrogen atmosphere and the resulting reaction mixture was stirred at 120 °C for 24 h. After cooling to room temperature and removal of volatiles, the products were
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2013

Bromination of hydrocarbons with CBr4, initiated by light-emitting diode irradiation

  • Yuta Nishina,
  • Bunsho Ohtani and
  • Kotaro Kikushima

Beilstein J. Org. Chem. 2013, 9, 1663–1667, doi:10.3762/bjoc.9.190

Graphical Abstract
  • azobisisobutyronitrile or benzoyl peroxide as radical initiators are typical conditions for Wohl–Ziegler bromination [9][10][11][12] and are widely used for the bromination of benzylic and allylic positions, despite the need for heating and the generation of equimolar amounts of waste. To avoid these drawbacks, several
PDF
Album
Letter
Published 14 Aug 2013

Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides

  • Christian Dollendorf,
  • Martin Hetzer and
  • Helmut Ritter

Beilstein J. Org. Chem. 2013, 9, 1652–1662, doi:10.3762/bjoc.9.189

Graphical Abstract
  • hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP) or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2013

Re2O7-catalyzed reaction of hemiacetals and aldehydes with O-, S-, and C-nucleophiles

  • Wantanee Sittiwong,
  • Michael W. Richardson,
  • Charles E. Schiaffo,
  • Thomas J. Fisher and
  • Patrick H. Dussault

Beilstein J. Org. Chem. 2013, 9, 1526–1532, doi:10.3762/bjoc.9.174

Graphical Abstract
  • peroxide or hydroperoxides [11][12], intramolecular displacements of reversibly formed hemiacetals and allylic alcohols [8][13], displacement of resonance-activated alcohols with electron-poor nitrogen nucleophiles [14], and a synthesis of homoallylated amines from condensation of carbonyl groups with an
  • moderate yield of a new hydroperoxyacetal. The exchange reaction was observed in several solvents (e.g., CH2Cl2, 1,2-dichloroethane) but was most efficient in acetonitrile. The alkoxide exchange was accompanied by much slower exchange of the peroxide; for example, prolonged reaction (>24 h) of acetal 26 in
  • hydroperoxide (which would presumably lead to heterolytic fragmentation) and activation of the peroxide C–O was clearly disfavored relative to activation of the alkoxide C–O bond. Rapid alkoxide metathesis was also observed in the presence of a strong Brønsted acid. Our observations suggest that the seeming
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2013

Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review

  • Lucio Melone and
  • Carlo Punta

Beilstein J. Org. Chem. 2013, 9, 1296–1310, doi:10.3762/bjoc.9.146

Graphical Abstract
  • role of these initiators in promoting the formation of PINO, performing several selective transformations under aerobic or anaerobic conditions. The combination of NHPI with tiny amounts of dibenzoyl peroxide (BPO) under an atmosphere of argon led to the hydroacylation of simple alkenes by addition of
PDF
Album
Review
Published 02 Jul 2013

Homolytic substitution at phosphorus for C–P bond formation in organic synthesis

  • Hideki Yorimitsu

Beilstein J. Org. Chem. 2013, 9, 1269–1277, doi:10.3762/bjoc.9.143

Graphical Abstract
  •  15) [42]. Photolysis of the esters in the presence of white phosphorus followed by oxidation with hydrogen peroxide yields alkylphosphonic acid. The efficient phosphination would stem from the highly strained structure and the weak P–P bonds of white phosphorus. After 13 years of silence, radical
PDF
Album
Review
Published 28 Jun 2013

Copper-catalyzed aerobic aliphatic C–H oxygenation with hydroperoxides

  • Pei Chui Too,
  • Ya Lin Tnay and
  • Shunsuke Chiba

Beilstein J. Org. Chem. 2013, 9, 1217–1225, doi:10.3762/bjoc.9.138

Graphical Abstract
  • molecular O2 to give peroxy radical III. Probably further reaction of III with Cu(I) species gives Cu(II)-peroxide IV, which undergoes fragmentation to give aldehyde V [16][17][18], which in turn cyclizes to afford hemiacetal 2a. Protonation of Cu(II)-peroxide IV followed by the reduction of the resulting
PDF
Album
Supp Info
Letter
Published 25 Jun 2013

Selective copper(II) acetate and potassium iodide catalyzed oxidation of aminals to dihydroquinazoline and quinazolinone alkaloids

  • Matthew T. Richers,
  • Chenfei Zhao and
  • Daniel Seidel

Beilstein J. Org. Chem. 2013, 9, 1194–1201, doi:10.3762/bjoc.9.135

Graphical Abstract
  • was heated under reflux in an oxygen atmosphere and in the presence of 20 mol % of CuCl2, 2 was only observed in trace amounts; deoxyvasicinone (4) and peroxide 8 were also formed as products. Switching the catalyst to Cu(OAc)2 led to a 15% yield of the desired product 2, but the process was still
  • promote the full oxidation of aminal 21 to deoxyvasicinone (4) were met with disappointment, with yields of 4 for these conditions reaching a maximum of around 40% (Table 3). In most cases, peroxide 8 was observed as a major side product. The Cu/TEMPO/DABCO catalyst system employed by Han et al. [35] for
  • Reddy’s conditions, in which piperidine was added directly to the solution after 36 hours instead of the removal of solvent from the intermediate peroxide beforehand, resulted in identical yields. Using the optimized conditions, a range of different quinazolinones were synthesized (Table 4). In general
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2013

Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

  • Rahat Javaid,
  • Shin-ichiro Kawasaki,
  • Akira Suzuki and
  • Toshishige M. Suzuki

Beilstein J. Org. Chem. 2013, 9, 1156–1163, doi:10.3762/bjoc.9.129

Graphical Abstract
  • have studied flow reactions, including the decomposition of hydrogen peroxide, oxidation of organic dyes, carbon–carbon coupling, and conversion of formic acid to hydrogen (H2) and carbon dioxide (CO2), using catalytic tubular reactors [10][11][12][13]. p-Aminophenol is an important intermediate
  • acid (HNO3, 60%) and hydrogen peroxide (H2O2, 30%) were purchased from Wako Pure Chemical Industries Ltd. and were used without further purification. Fabrication of tubular reactors A double-layered tube (o.d. 1.6 mm, i.d. 0.5 mm, length 100 cm) composed of Inconel 625 and titanium (Ti) inner layer
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2013

Methylidynetrisphosphonates: Promising C1 building block for the design of phosphate mimetics

  • Vadim D. Romanenko and
  • Valery P. Kukhar

Beilstein J. Org. Chem. 2013, 9, 991–1001, doi:10.3762/bjoc.9.114

Graphical Abstract
  • reaction of PhCCl3 and (EtO)3P at 120–140 °C produced 1,2-diphenyl-1,1,2,2-tetrachloroethane [13]. The early work reported that the trisphosphonate PhC(PO3Et2)3 was formed from triethyl phosphite and dibenzoyl peroxide when reagents were boiled under reflux in chloroform, but proof of the trisphosphonate
  • intermediate with hydrogen peroxide in tetrahydrofuran [26]. Mixed ethyl/isopropyl trisphosphonate ester 9 has been prepared by treatment of the bisphosphonate 7 with diethyl chlorophosphite and sodium hexamethyldisilazane, and subsequent oxidation of the phosphinate intermediate 8 with iodine in pyridine–THF
  • treatment of trisphosphonate salt 38 with a mixture of hydrogen peroxide in trifluoroacetic acid (Scheme 22). An alternative and more efficient synthesis of methylidynetrisphosphonic acid uses a transsilylation of hexaalkyl trisphosphonate 9 followed by hydrolysis [27]. Synthesis of
PDF
Album
Review
Published 24 May 2013

NHC-catalysed highly selective aerobic oxidation of nonactivated aldehydes

  • Lennart Möhlmann,
  • Stefan Ludwig and
  • Siegfried Blechert

Beilstein J. Org. Chem. 2013, 9, 602–607, doi:10.3762/bjoc.9.65

Graphical Abstract
  • H2O2 as the terminal oxidation agent instead of O2 under nitrogen atmosphere was carried out for the NHC-catalysed oxidation of 4-nitrobenzaldehyde to 4-nitrobenzoic acid. It revealed that the peroxide was capable of effecting the oxidation as well providing comparable conversion. Conclusion In summary
PDF
Album
Full Research Paper
Published 22 Mar 2013

Complete σ* intramolecular aromatic hydroxylation mechanism through O2 activation by a Schiff base macrocyclic dicopper(I) complex

  • Albert Poater and
  • Miquel Solà

Beilstein J. Org. Chem. 2013, 9, 585–593, doi:10.3762/bjoc.9.63

Graphical Abstract
  • pathway for the overall intramolecular aromatic hydroxylation, i.e., from the initial O2 reaction with the dicopper(I) species to first form a CuICuII-superoxo species, the subsequent reaction with the second CuI center to form a μ-η2:η2-peroxo-CuII2 intermediate, the concerted peroxide O–O bond cleavage
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2013

Some aspects of radical chemistry in the assembly of complex molecular architectures

  • Béatrice Quiclet-Sire and
  • Samir Z. Zard

Beilstein J. Org. Chem. 2013, 9, 557–576, doi:10.3762/bjoc.9.61

Graphical Abstract
  • formation of the amidyl radical in this case calls for a different precursor and does not involve a stannane reagent. The sequence is triggered by the attack of undecyl radicals on thiosemicarbazone 12. Undecyl radicals arise from the thermal homolysis of lauroyl peroxide and decarboxylation. The lauroyl
  • peroxide must be used in stoichiometric amounts, for it is required to oxidise the intermediate cyclohexadienyl radical 13 into its corresponding cation and thence into intermediate 14 by rapid loss of a proton. A faster access to complexity is obtained when intermolecular steps are also involved. This
  • well as simple addition product 40 are thus obtained in good combined yield (Scheme 9). The latter may be converted into the same mixture of 41a and 41b by further treatment with peroxide. In practice, however, it is more convenient to subject adduct 40 separately to a reductive double cyclisation to
PDF
Album
Review
Published 18 Mar 2013
Other Beilstein-Institut Open Science Activities