Search results

Search for "N-methylation" in Full Text gives 37 result(s) in Beilstein Journal of Organic Chemistry.

Synthesis, characterization, antimicrobial, cytotoxic and carbonic anhydrase inhibition activities of multifunctional pyrazolo-1,2-benzothiazine acetamides

  • Ayesha Saeed,
  • Shahana Ehsan,
  • Muhammad Zia-ur-Rehman,
  • Erin M. Marshall,
  • Sandra Loesgen,
  • Abdus Saleem,
  • Simone Giovannuzzi and
  • Claudiu T. Supuran

Beilstein J. Org. Chem. 2025, 21, 348–357, doi:10.3762/bjoc.21.25

Graphical Abstract
  • dry DMF. The five-membered ring of this esterified benzisothiazole 2 was then expanded to form a six-membered cycle via a ring-expansion reaction in anhydrous conditions. In this reaction, the benzisothiazole scaffold was converted into a benzothiazine backbone 3 followed by N-methylation to obtain
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2025

gem-Difluorovinyl and trifluorovinyl Michael acceptors in the synthesis of α,β-unsaturated fluorinated and nonfluorinated amides

  • Monika Bilska-Markowska,
  • Marcin Kaźmierczak,
  • Wojciech Jankowski and
  • Marcin Hoffmann

Beilstein J. Org. Chem. 2024, 20, 2946–2953, doi:10.3762/bjoc.20.247

Graphical Abstract
  • importantly, the application of 8 equiv of tert-BuLi induced the formation of N-methylation products (Scheme 6). Compounds 15a (15a’) and 16a (16a’) existed as two rotamers, in ratios of 1:1.15 and 1:1.76, respectively, with the predominant cisoid isomer. Transoid (trans 15a(16a)) isomers contained a larger
  • -unsaturated amides. Formation of β-fluorinated and nonfluorinated α,β-unsaturated amides. Michael addition of 1a–d with tert-BuLi. Michael addition of 2a–d with tert-BuLi. Formation of N-methylation products. Optimization of reaction conditions. Supporting Information Supporting Information File 40: Detailed
PDF
Album
Supp Info
Letter
Published 15 Nov 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
PDF
Album
Review
Published 16 Aug 2024

Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations

  • Ryo Tanifuji and
  • Hiroki Oguri

Beilstein J. Org. Chem. 2024, 20, 1693–1712, doi:10.3762/bjoc.20.151

Graphical Abstract
  • pentacyclic core scaffold of 5. Overall, the single NRPS module SfmC is responsible for the construction of the highly functionalized scaffold 93 from the two simple amino acid derivatives 86 and 88. After NRPS-catalyzed scaffold assembly, SfmM1-mediated N-methylation at N12, and subsequent SfmO2/O4-promoted
  • chemo-enzymatic total synthesis of jorunnamycin A (103). SfmC-catalyzed enzymatic conversion followed by cyanation and N-methylation also converted substrate analog 101 to the corresponding pentacyclic tertiary amine 102 in 18% overall yield based on peptidyl aldehyde 101. Subsequent simple chemical
PDF
Album
Review
Published 23 Jul 2024

Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry

  • Maria-Paula Schröder,
  • Isabel P.-M. Pfeiffer and
  • Silja Mordhorst

Beilstein J. Org. Chem. 2024, 20, 1652–1670, doi:10.3762/bjoc.20.147

Graphical Abstract
  • triethylsilane in TFA-CH3Cl, resulting in the N-methylated amino acid as the final product [38]. The third method for chemical N-methylation involves the use of protection groups that also enhance the reactivity of the primary amine (Figure 2). Once the amine is deprotonated, an electrophilic methylation reagent
  • . Furthermore, side reaction such as racemisation, fragmentation, deletions, and double or triple methylations can lead to lower yields and hinder the coupling of further amino acids after N-methylation [44]. Ribosomal synthesis in vitro. A cell-free translation system termed “protein synthesis using
  • section. N-Methyltransferases N-Methylations of peptides offer several advantages for peptide therapeutics, including conformational modulation, influence on receptor subtype specificity, increased proteolytic resistance, and improved oral bioavailability and cell permeability [82][83]. N-Methylation can
PDF
Album
Review
Published 18 Jul 2024

Synthesis of 2-benzyl N-substituted anilines via imine condensation–isoaromatization of (E)-2-arylidene-3-cyclohexenones and primary amines

  • Lu Li,
  • Na Li,
  • Xiao-Tian Mo,
  • Ming-Wei Yuan,
  • Lin Jiang and
  • Ming-Long Yuan

Beilstein J. Org. Chem. 2024, 20, 1468–1475, doi:10.3762/bjoc.20.130

Graphical Abstract
  • could be easily carried out by catalytic hydrogenation to produce 6 (Scheme 6a). On the other hand, 4ax could smoothly undergo N-methylation with MeI to give product 7 in quantitative yield (Scheme 6b). Conclusion In conclusion, we have developed an efficient method to rapidly synthesize 2-benzyl-N
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • the several alcohols and primary amines in the presence of t-BuOK (0.75 equiv) in toluene at 80 °C for 24–48 h and selectively produced the N-alkylated products with good yields (Scheme 3). More interestingly, the first non-noble-metal catalyzed the most challenging N-methylation of amines with
  • generation of manganese PNP pincer complexes for the N-methylation of aromatic amines with methanol [35]. Various primary anilines were methylated selectively with good yields using Mn2 (2 mol %) and t-BuOK (0.5 equiv) as a base at 100 °C for 16 h (Scheme 4). Compared to their previous report, the N
  • -methylation of amines with methanol was achieved with lower catalyst and base loading. Sortais et al. reported an elegant example of a manganese-catalyzed N-methylation of primary amines with methanol using catalytic amounts of base. They synthesized a novel Mn(I) complex bearing a bis(diaminopyridine
PDF
Album
Review
Published 21 May 2024

Synthesis and biological evaluation of Argemone mexicana-inspired antimicrobials

  • Jessica Villegas,
  • Bryce C. Ball,
  • Katelyn M. Shouse,
  • Caleb W. VanArragon,
  • Ashley N. Wasserman,
  • Hannah E. Bhakta,
  • Allen G. Oliver,
  • Danielle A. Orozco-Nunnelly and
  • Jeffrey M. Pruet

Beilstein J. Org. Chem. 2023, 19, 1511–1524, doi:10.3762/bjoc.19.108

Graphical Abstract
  • of two substituted arylboronic acids, followed by N-methylation, and final ring-closure via Bischler–Napieralski conditions [45][47][48]. These steps provided chelerythrine variants C1–C4, with structural variability stemming from the initial substituted tetralone (R1/R2) and/or the arylboronic acid
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2023

Synthesis and reactivity of azole-based iodazinium salts

  • Thomas J. Kuczmera,
  • Annalena Dietz,
  • Andreas Boelke and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 317–324, doi:10.3762/bjoc.19.27

Graphical Abstract
  • to iodide and bromide were performed giving the salts 10a and 10b in excellent yields [27]. A copper-catalyzed iodination gave the diiodinated product 11 in quantitative yield [42]. Finally, N-methylation of 5aa was performed, to yield the dicationic salt 5av in 56% yield without decomposition of the
  • center intact. Treatment of the ortho-pyrazole-substituted salt 5bb with MeOTf resulted in a selective benzimidazole N-methylation. A reaction on the pyrazole nitrogen is impeded due to its coordination with the iodane’s σ-hole (Scheme 2a). Besides nitrogen-substitution, the benzimidazole C-2 position of
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2023

A versatile way for the synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with the NaBH4/I2 system

  • Lin Chen,
  • Xuan Zhou,
  • Zhiyong Chen,
  • Changxu Wang,
  • Shunjie Wang and
  • Hanbing Teng

Beilstein J. Org. Chem. 2022, 18, 1032–1039, doi:10.3762/bjoc.18.104

Graphical Abstract
  • ][31] and carbon dioxide (CO2) [32][33][34][35][36][37][38][39] have been developed for the N-methylation of amines. However, these N-alkylation methods often require the employment of expensive catalysts, and the N-alkylation of primary amines generally does not stop with monomethylation as expected
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

New synthesis of a late-stage tetracyclic key intermediate of lumateperone

  • Mátyás Milen,
  • Bálint Nyulasi,
  • Tamás Nagy,
  • Gyula Simig and
  • Balázs Volk

Beilstein J. Org. Chem. 2022, 18, 653–659, doi:10.3762/bjoc.18.66

Graphical Abstract
  • to the hydrazine derivative 4, followed by a Fischer indole synthesis with ethyl 4-oxopiperidine-1-carboxylate (5) provided tetracyclic compound 6. Its reduction with sodium cyanoborohydride in trifluoroacetic acid (TFA) to cis-indoline derivative (±)-7, followed by N-methylation [(±)-8] and
  • reaction steps [8][9][10], e.g., because of the use of chloroacetamide instead of N-methylchloroacetamide, necessitating an additional N-methylation. The tetracycle 8 was finally subjected to the same reaction sequence as the corresponding racemate (see also Scheme 1), lumateperone (1) was thus prepared
  • , which would have been based on the 1-methyl-4-amino-1,2,3,4-tetrahydroquinoxaline (23) intermediate (Scheme 4). We planned to convert the latter into (±)-9a via compound 22a by known methods. The synthesis of compound 23 was attempted as follows. N-Methylation of quinoxaline (24) with methyl p
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2022

BINOL as a chiral element in mechanically interlocked molecules

  • Matthias Krajnc and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2022, 18, 508–523, doi:10.3762/bjoc.18.53

Graphical Abstract
  • ]. Macrocycle (S)-61, featuring two iodotriazole units, was reacted with bis-iodoalkyne 62 and azides 63a/b in order to establish the mechanical bond in an active metal template approach (using the conformational flexibility of the iodotriazole groups for copper N-ligation). Subsequent N-methylation of the
PDF
Album
Review
Published 06 May 2022

Efficient N-arylation of 4-chloroquinazolines en route to novel 4-anilinoquinazolines as potential anticancer agents

  • Rodolfo H. V. Nishimura,
  • Thiago dos Santos,
  • Valter E. Murie,
  • Luciana C. Furtado,
  • Leticia V. Costa-Lotufo and
  • Giuliano C. Clososki

Beilstein J. Org. Chem. 2021, 17, 2968–2975, doi:10.3762/bjoc.17.206

Graphical Abstract
  • N-methylation [15]. The microwave-mediated reaction of 4-chloro-6-halo-2-phenylquinazolines 8a or 8b with o-toluidine (14a) in THF/H2O could be accomplished within 2 h and afforded the corresponding quinazoline derivatives 15a and 15b in 74% and 78% isolated yields, respectively. In addition, when
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • multipeptides of varying ring size were successfully obtained with excellent functional group tolerance. In addition, selective N-methylation of the 2-pyridine directing group and successive hydrogenation processes provided an efficient traceless removal of the directing group, affording free-NH tryptophan
PDF
Album
Review
Published 26 Jul 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • N-methylation led to (−)-angustureine (107) in high overall yield (Scheme 31). The same methodology was applied to the synthesis of (−)-cuspareine (108), starting in this case from enantiomeric imine (RS)-104b, and using 2-(3,4-dimethoxyphenyl)ethylmagnesium bromide as Grignard reagent. A
  • , which after desulfination and N-methylation led to expected (+)-sedamine (125) in 30% overall yield from ketone derivative 124. The stereoselective synthesis of trans-5-hydroxy-6-substituted-2-piperidinones was also reported by the group of Wei, taking advantage of the addition of Grignard reagents to N
  • -sulfinyl imine 160. A subsequent base promoted cyclization of chloroamides (158 and 162) and the products 165 and 163 were obtained in 91% and 93% yields respectively. The N-methylation of alkaloids 163 and 165 using 37% formaldehyde and sodium borohydride formed the tetrahydroisoquinoline 164 and 166 in
PDF
Album
Review
Published 12 May 2021

Benzothiazolium salts as reagents for the deoxygenative perfluoroalkylthiolation of alcohols

  • Armin Ariamajd,
  • Nils J. Gerwien,
  • Benjamin Schwabe,
  • Stefan Dix and
  • Matthew N. Hopkinson

Beilstein J. Org. Chem. 2021, 17, 83–88, doi:10.3762/bjoc.17.8

Graphical Abstract
  • observed within 16 h at rt, and the heteroaromatic compounds 1a–e could be isolated in good yields. Subsequent N-methylation with methyl trifluoromethanesulfonate in CH2Cl2 also proceeded smoothly with the BT-SRF reagents each being obtained after 48 h at rt in high yields upon precipitation with Et2O. As
PDF
Album
Supp Info
Letter
Published 08 Jan 2021

Convenient access to pyrrolidin-3-ylphosphonic acids and tetrahydro-2H-pyran-3-ylphosphonates with multiple contiguous stereocenters from nonracemic adducts of a Ni(II)-catalyzed Michael reaction

  • Alexander N. Reznikov,
  • Dmitry S. Nikerov,
  • Anastasiya E. Sibiryakova,
  • Victor B. Rybakov,
  • Evgeniy V. Golovin and
  • Yuri N. Klimochkin

Beilstein J. Org. Chem. 2020, 16, 2073–2079, doi:10.3762/bjoc.16.174

Graphical Abstract
  • ,6R)-13b. Intermolecular N-methylation of reduction product 7. Synthesis of pyrrolidinyl phosphonic acids 11a–d. Synthesis of tetrahydropyranylphosphonates 13a–f via diastereoselective Henry/acetalyzation reaction. Synthesis of (3,4-dihydro-2H-pyran-5-yl)phosphonate 14. Optimization of the conditions
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2020

Clickable azide-functionalized bromoarylaldehydes – synthesis and photophysical characterization

  • Dominik Göbel,
  • Marius Friedrich,
  • Enno Lork and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2020, 16, 1683–1692, doi:10.3762/bjoc.16.139

Graphical Abstract
  • diphenylphosphoryl azide (DPPA) in excellent yield. Finally, the oxazoline group, which acted as directing and protecting group, was removed in a three-step sequence of N-methylation, reduction of the in situ formed iminium ion and acidic hydrolysis. This afforded the azide-functionalized para-bromobenzaldehyde 3 in
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2020

Architecture and synthesis of P,N-heterocyclic phosphine ligands

  • Wisdom A. Munzeiwa,
  • Bernard Omondi and
  • Vincent O. Nyamori

Beilstein J. Org. Chem. 2020, 16, 362–383, doi:10.3762/bjoc.16.35

Graphical Abstract
  • chlorodiphenylphosphine, afforded 1-methyl-4,5-bis(diphenylphosphino)imidazole (85). Finally, N-methylation gave the imidazolium salt derivative 86 in good yield (65%). Preparation of N-heterocyclic phosphines via metal-catalyzed P–C/N bond formation There is limited availability of certain N-containing precursors and
PDF
Album
Review
Published 12 Mar 2020

N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds

  • Iwona E. Głowacka,
  • Aleksandra Trocha,
  • Andrzej E. Wróblewski and
  • Dorota G. Piotrowska

Beilstein J. Org. Chem. 2019, 15, 1722–1757, doi:10.3762/bjoc.15.168

Graphical Abstract
  • -step aziridine ring opening was performed on the silylated alcohol (2S,1'R,1''S)-58 and included N-methylation and reaction with the protected phenylmagnesium bromide to form (2S,3R)-59. The last step opened the way to synthesis of tyroscherin analogues [58]. The alcohol (2S,3R)-60 was obtained after
  • sources and are known as precursors to tropane alkaloids [59]. Together with (−)-pseudohygroline (2S,2'R)-62 they were synthesized from a common intermediate (2S,1'R)-63 prepared from the aldehyde (2R,1'R)-6 by Wittig olefination [60] and a regioselective C=C bond reduction (Scheme 17) [61]. N-Methylation
  • stereospecific crotylation with a homochiral boronate to give the aziridine alcohol (2R,1'R,2'R,1''R)-140 (Scheme 36) [90]. After O-benzylation and N-methylation the ring opening in the intermediate aziridinium ion was tried. It appeared that the best regioselectivity (87:13) was achieved with cesium acetate and
PDF
Album
Review
Published 23 Jul 2019

Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP)

  • Małgorzata Urbańczyk,
  • Michał Jewgiński,
  • Joanna Krzciuk-Gula,
  • Jerzy Góra,
  • Rafał Latajka and
  • Norbert Sewald

Beilstein J. Org. Chem. 2019, 15, 1581–1591, doi:10.3762/bjoc.15.162

Graphical Abstract
  • with the aim of excluding pH-dependent charge effects and to simulate a protein environment. The introduction of a methyl amide function at the C-terminus of glycopeptides was carried out on solid phase. The N-methylation of the peptide terminus on solid support was an efficient four-step procedure
  • . Moreover, performing this reaction on the resin has eliminated the need for product purification after each step. Modification of the resin was performed according to the protocol published by J. Chatterjee and co-workers [27]. This practical and straightforward strategy involved direct N-methylation of
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Synthesis of the polyketide section of seragamide A and related cyclodepsipeptides via Negishi cross coupling

  • Jan Hendrik Lang and
  • Thomas Lindel

Beilstein J. Org. Chem. 2019, 15, 577–583, doi:10.3762/bjoc.15.53

Graphical Abstract
  • , whereas the use of exactly stoichiometric amounts resulted in incomplete N-methylation. Treating the Boc-protected methyl ester of iodotyrosine 21 with a larger excess of base and methyl iodide (10 equiv each) led to the formation of the α-quaternary amino acid 23 (Scheme 4). An alternative route to the N
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Synthesis and SAR of the antistaphylococcal natural product nematophin from Xenorhabdus nematophila

  • Frank Wesche,
  • Hélène Adihou,
  • Thomas A. Wichelhaus and
  • Helge B. Bode

Beilstein J. Org. Chem. 2019, 15, 535–541, doi:10.3762/bjoc.15.47

Graphical Abstract
  • phthalimides 16 and 23 [29]. These intermediary compounds 16 and 23 also allowed an N-methylation of the azaindole moiety with sodium hydride (NaH) and methyl iodide (MeI) to yield 17 and 24. By ethanolic hydrazinolysis and microwave irradiation the phthalimides (16, 17, 23, and 24) were deprotected yielding
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019

Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO and PQS

  • Sven Thierbach,
  • Max Wienhold,
  • Susanne Fetzner and
  • Ulrich Hennecke

Beilstein J. Org. Chem. 2019, 15, 187–193, doi:10.3762/bjoc.15.18

Graphical Abstract
  • dimethyl sulfate mainly N-methylation was observed accompanied by a small amount of the N,O-dimethylquinolonium ion. Pure NMe-HHQ (2) was obtained in moderate yield of 51% by column chromatography (Scheme 1). Selective O-methylation of an AQ has been reported using diazomethane [1]. To avoid explosive
  • separated from the N-methylation product by column chromatography and could be isolated in 32% yield. Surprisingly, the N-methylated product under these conditions was not NMe-HHQ (2), but instead a second methylation in the benzylic position had occurred to give N-methyl-2-(1-methylheptyl)-4(1H)-quinolone
  • conditions to give a mixture of OMe-3I-HHQ (9, 21%) and NMe-3I-HHQ (10, 24%, Scheme 3). Interestingly, in the case of 3I-HHQ (8) the ratio of N-methylation versus O-methylation was almost 1:1 and no further methylation of 10 in the benzylic position was observed. With the methylated compounds 9 and 10 in
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2019

Phosphodiester models for cleavage of nucleic acids

  • Satu Mikkola,
  • Tuomas Lönnberg and
  • Harri Lönnberg

Beilstein J. Org. Chem. 2018, 14, 803–837, doi:10.3762/bjoc.14.68

Graphical Abstract
PDF
Album
Review
Published 10 Apr 2018
Other Beilstein-Institut Open Science Activities