Search for "butenolides" in Full Text gives 18 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45
Graphical Abstract
Scheme 1: Features of the ideal reaction (redrawn from P. A. Wender et al. [1]).
Scheme 2: Some of the most popular MCRs with formaldehyde as the carbonyl component.
Scheme 3: Ugi reaction under a catalyzed electro-oxidation process using TEMPO (2,2,6,6-tetramethyl-1-piperid...
Scheme 4: Examples of different products obtained by MCRs in which DMSO serves as -SCH3 source.
Scheme 5: Mechanism of the decomposition of DMSO under acidic or thermal conditions. a) In situ generation of...
Scheme 6: Povarov multicomponent reaction to quinolines.
Scheme 7: Example of the Povarov reaction with formaldehyde with a julolidine derivative as main product.
Scheme 8: Povarov multicomponent reaction to quinoline derivatives I and II using DMSO as formaldehyde surrog...
Scheme 9: Example of a Povarov three-component reaction with change of catalyst, yielding regioisomer III. In...
Scheme 10: The Povarov three-component reactions carried out under acidic catalysis to afford quinoline regios...
Scheme 11: Different MCR routes involving DMSO to synthesize complex heterocycles such as diarylpyridines and ...
Scheme 12: Pyrazole synthesis by a three-component reaction using DMSO as a source of a C-1 unit.
Scheme 13: Three-component reactions for the synthesis of aliphatic heterocycles 13 and 14 using DMSO as a for...
Scheme 14: Proposed mechanism for the 3CR between homoallylic amines, disulfides, and DMSO.
Scheme 15: Mannich-type reaction using DMSO as formaldehyde surrogate.
Scheme 16: Mechanism for the 3CR-Mannich-type reaction between aryl ketone 18, saccharine (19), and DMSO. The ...
Scheme 17: Mannich-type reaction using DMSO as formaldehyde surrogate and under oxidative activation.
Scheme 18: Three-component reaction between an indazole, a carboxylic acid, and DMSO.
Scheme 19: Amine–aldehyde–alkyne (AAA) coupling reaction and plausible mechanism.
Scheme 20: AHA coupling for the synthesis of propargylamines using dihalomethanes as C1 building blocks.
Scheme 21: AHA coupling using CH2Cl2 as both solvent and methylene source.
Scheme 22: Examples of propargylamines synthesized under catalytic AHA protocols.
Scheme 23: Proposed mechanism for the synthesis of propargylamines using dichloromethane as a C1 source.
Scheme 24: Mechanism proposed for the generation of the aminal intermediate E by Buckley et al. [68].
Scheme 25: Pudovic and Kabachnik–Fields reactions for the synthesis of α-aminophosphonates.
Scheme 26: a) Abramov side reaction that generates α-hydroxy phosphonate as a byproduct during the Kabachnik-F...
Scheme 27: Catalyst-free three component reaction to afford α-amino phosphorus product 35 using 1,1-dihaloalka...
Scheme 28: a) Proposed mechanism for the three-component reaction of dichloromethane, amine and phosphorus com...
Scheme 29: Ugi-ammonia strategy using HMTA as a formaldehyde surrogate.
Scheme 30: Glyoxylate and its derivatives as C1 building blocks.
Scheme 31: The Groebke–Blackburn–Bienaymé multicomponent reaction (GBB) and its mechanism.
Scheme 32: a) Byproducts in the GBB multicomponent reaction (GBB) when formaldehyde is used as the carbonyl co...
Scheme 33: Possible regioisomers in the GBB multicomponent reaction when formaldehyde is used as the carbonyl ...
Scheme 34: The multicomponent GBB reaction yields 2-unsubstituted 3-aminoimidazo heterocycles 42a using MP-gly...
Scheme 35: GBB multicomponent reaction to 2-unsubstituted 3-amino imidazo heterocycles 42a using glyoxylic aci...
Scheme 36: GBB reaction using glyoxylic acid immobilized on silica as formaldehyde surrogate.
Scheme 37: Bioactive products synthesized by the GBB reaction using glyoxylic acid.
Scheme 38: van Leusen three-component reaction to imidazoles.
Scheme 39: Side reaction during the synthesis of imidazoles with formaldehyde as the carbonyl compound.
Scheme 40: Optimization of the van Leusen three component reaction to 1,4-disubstituted imidazoles 43 using gl...
Scheme 41: Application of the Sisko strategy [96] for the synthesis of CB1 receptor antagonist compounds [97].
Scheme 42: Side reaction, when NH4OH is used as amine component.
Scheme 43: Ugi-type adducts with the ester moiety and the acidic CH to be used for post-cyclization sequences.
Scheme 44: Ugi/cycloisomerization process to pyrrolones 51, butenolides 52, and pyrroline 53.
Scheme 45: Radical cyclization reactions from Ugi adducts promoted by TEMPO.
Scheme 46: Hydrolysis and decarboxylation reactions to products with incorporation of a C1 unit of ethyl glyox...
Scheme 47: One-step synthetic route to pyrrolones 60 using phenylglyoxal.
Scheme 48: Ugi-pseudo-Knoevenagel-pseudo-Dieckmann cascade sequence for the synthesis of fused heterocycles.
Scheme 49: Ugi-pseudo-Knoevenagel reaction from ethyl glyoxylate.
Beilstein J. Org. Chem. 2025, 21, 556–563, doi:10.3762/bjoc.21.44
Graphical Abstract
Scheme 1: Various examples of transformations of furanones.
Scheme 2: Interaction of starting 2H-furo[3,2-b]pyran-2-ones with diverse amines.
Scheme 3: Synthesis of enamines 4. Reaction conditions: 1a (1 mmol, 0.38 g), amine 2 (1.2 mmol), AcOH (3 mL).
Scheme 4: Synthesis of pyrazol-3-ones 8. Reaction conditions: 1 (1 mmol), hydrazine 7 (1.1 mmol), EtOH (5 mL)....
Scheme 5: Synthesis of pyrazol-3-one 10a.
Scheme 6: Synthesis of unsubstituted pyrazol-3-ones 10. Reaction conditions: 1 (1 mmol), hydrazine hydrate (2...
Scheme 7: Synthesis of isoxazolone 11. Reaction conditions: 1c (1 mmol, 0.30 g), hydroxylamine hydrochloride ...
Scheme 8: Proposed reaction mechanism.
Scheme 9: Synthesis of product 13. Reaction conditions: 8o (1 mmol, 0.37 g), pivaloyl chloride (3 mmol, 0.36 ...
Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268
Graphical Abstract
Figure 1: Reactivity of α,β-unsaturated imines and variety of structures.
Figure 2: The hetero-Diels–Alder and inverse electron demand hetero-Diels–Alder reactions.
Figure 3: Different strategies to promote the activation of dienes and dienophiles in IEDADA reactions.
Figure 4: Examples of non-covalent interactions in organocatalysis.
Scheme 1: Enantioselective bifunctional thiourea-catalyzed inverse electron demand Diels–Alder reaction of N-...
Scheme 2: Cinchona-derived thiourea-catalyzed stereoselective (3 + 2) reaction of α,β-unsaturated imines and ...
Scheme 3: Cinchona-derived thiourea-catalyzed stereoselective (3 + 2)/(4 + 2) cascade reaction of α,β-unsatur...
Scheme 4: Enantioselective bifunctional squaramide-catalyzed formal [4 + 2] cycloaddition of malononitrile wi...
Scheme 5: Bifunctional squaramide-catalyzed IEDADA reaction of saccharin-derived 1-azadienes and azlactones.
Scheme 6: Chiral guanidine-catalyzed enantioselective (4+1) cyclization of benzofuran-derived azadienes with ...
Scheme 7: Bifunctional squaramide-catalyzed [4 + 2] cyclization of benzofuran-derived azadienes and azlactone...
Scheme 8: Chiral bifunctional squaramide-catalyzed domino Mannich/formal [4 + 2] cyclization of 2-benzothiazo...
Scheme 9: Chiral bifunctional thiourea-catalyzed formal IEDADA reaction of β,γ-unsaturated ketones and benzof...
Scheme 10: Dihydroquinine-derived squaramide-catalyzed (3 + 2) cycloaddition reaction of isocyanoacetates and ...
Scheme 11: Enantioselective squaramide-catalyzed asymmetric IEDADA reaction of benzofuran-derived azadienes an...
Scheme 12: Scale up and derivatizations of benzofuran-fused 2-piperidinol derivatives.
Scheme 13: Dihydroquinine-derived squaramide-catalyzed Mannich-type reaction of isocyanoacetates with N-(2-ben...
Figure 5: Structure of a cinchona alkaloid and (DHQD)2PHAL.
Scheme 14: Enantioselective modified cinchona alkaloid-catalyzed [4 + 2] annulation of γ-butenolides and sacch...
Scheme 15: Chiral tertiary amine-catalyzed [2 + 4] annulation of cyclic 1-azadiene with γ-nitro ketones.
Scheme 16: Inverse electron demand aza-Diels–Alder reaction (IEDADA) of 1-azadienes with enecarbamates catalyz...
Scheme 17: Phosphoric acid-catalyzed enantioselective [4 + 2] cycloaddition of benzothiazolimines and enecarba...
Scheme 18: Phosphoric acid-catalyzed enantioselective inverse electron demand aza-Diels–Alder reaction of in s...
Scheme 19: Proposed reaction mechanism for the phosphoric acid-catalyzed enantioselective inverse electron dem...
Scheme 20: Enantioselective dearomatization of indoles by a (3 + 2) cyclization with azoalkenes catalyzed by a...
Scheme 21: Synthetic applicability of the pyrroloindoline derivatives.
Scheme 22: Chiral phosphoric acid-catalyzed (2 + 3) dearomative cycloaddition of 3-alkyl-2-vinylindoles with a...
Scheme 23: Chiral phosphoric acid-catalyzed asymmetric [4 + 2] cycloaddition of aurone-derived 1-azadienes and...
Scheme 24: Phosphoric acid-catalyzed enantioselective formal [4 + 2] cycloaddition of dienecarbamates and 2-be...
Scheme 25: Chiral phosphoric acid-catalyzed asymmetric inverse electron demand aza-Diels–Alder reaction of 1,3...
Scheme 26: Chiral phosphoric acid-catalyzed asymmetric Attanasi reaction between 1,3-dicarbonyl compounds and ...
Scheme 27: Synthetic applicability of the NPNOL derivatives.
Scheme 28: Chiral phosphoric acid-catalyzed asymmetric intermolecular formal (3 + 2) cycloaddition of azoalken...
Scheme 29: Enantioselective [4 + 2] cyclization of α,β-unsaturated imines and azlactones.
Scheme 30: Catalytic cycle for the chiral phosphoric acid-catalyzed enantioselective [4 + 2] cyclization of α,...
Beilstein J. Org. Chem. 2024, 20, 1001–1010, doi:10.3762/bjoc.20.88
Graphical Abstract
Figure 1: A) Bioactive natural products containing a furan ring (blue) or 3-furoic acid moiety (red): plakors...
Figure 2: A) A diagram of an example of a molecular probe. B) The maleimide-based probe (6) for furans.
Figure 3: A) General Diels–Alder reaction scheme. B) MMF derivatives explored in this reaction.
Figure 4: A. Reaction scheme. B. Representative mass spectra of MMF5 cycloadduct 24 with 3:1 isotopic ratio p...
Figure 5: A. The UV trace (254 nm) for M145 control, M145 + probe 6, W75 control, and W75 + probe 6. M145 con...
Beilstein J. Org. Chem. 2024, 20, 561–569, doi:10.3762/bjoc.20.48
Graphical Abstract
Scheme 1: DAS spirocyclizations reported earlier and the synthetic methodology investigated in this work.
Figure 1: Examples of biologically active compounds and natural products based on THF/THP spiro-conjugates wi...
Scheme 2: An initial example on Rh(II)-catalyzed O–H insertion/base-promoted cyclization involving diazo comp...
Scheme 3: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving DAS 1 and various prop...
Scheme 4: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving DAS 1 and allenic acid...
Scheme 5: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving various DAS 1 and 3-br...
Scheme 6: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving DAS 1 and 2-(bromometh...
Scheme 7: Examples where a target spirocyclic product was not observed.
Scheme 8: Plausible mechanism of the transformations studied.
Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106
Graphical Abstract
Scheme 1: Sulfur-containing bioactive molecules.
Scheme 2: Scandium-catalyzed synthesis of thiosulfonates.
Scheme 3: Palladium-catalyzed aryl(alkyl)thiolation of unactivated arenes.
Scheme 4: Catalytic cycle for Pd-catalyzed aryl(alkyl)thiolation of unactivated arenes.
Scheme 5: Iron- or boron-catalyzed C–H arylthiation of substituted phenols.
Scheme 6: Iron-catalyzed azidoalkylthiation of alkenes.
Scheme 7: Plausible mechanism for iron-catalyzed azidoalkylthiation of alkenes.
Scheme 8: BF3·Et2O‑mediated electrophilic cyclization of aryl alkynoates.
Scheme 9: Tentative mechanism for BF3·Et2O‑mediated electrophilic cyclization of aryl alkynoates.
Scheme 10: Construction of 6-substituted benzo[b]thiophenes.
Scheme 11: Plausible mechanism for construction of 6-substituted benzo[b]thiophenes.
Scheme 12: AlCl3‑catalyzed cyclization of N‑arylpropynamides with N‑sulfanylsuccinimides.
Scheme 13: Synthetic utility of AlCl3‑catalyzed cyclization of N‑arylpropynamides with N‑sulfanylsuccinimides.
Scheme 14: Sulfenoamination of alkenes with sulfonamides and N-sulfanylsuccinimides.
Scheme 15: Lewis acid/Brønsted acid controlled Pd-catalyzed functionalization of aryl C(sp2)–H bonds.
Scheme 16: Possible mechanism for Lewis acid/Brønsted acid controlled Pd-catalyzed functionalization of aryl C...
Scheme 17: FeCl3-catalyzed carbosulfenylation of unactivated alkenes.
Scheme 18: Copper-catalyzed electrophilic thiolation of organozinc halides.
Scheme 19: h-BN@Copper(II) nanomaterial catalyzed cross-coupling reaction of sulfoximines and N‑(arylthio)succ...
Scheme 20: AlCl3‑mediated cyclization and sulfenylation of 2‑alkyn-1-one O‑methyloximes.
Scheme 21: Lewis acid-promoted 2-substituted cyclopropane 1,1-dicarboxylates with sulfonamides and N-(arylthio...
Scheme 22: Lewis acid-mediated cyclization of β,γ-unsaturated oximes and hydrazones with N-(arylthio/seleno)su...
Scheme 23: Credible pathway for Lewis acid-mediated cyclization of β,γ-unsaturated oximes with N-(arylthio)suc...
Scheme 24: Synthesis of 4-chalcogenyl pyrazoles via chalcogenation/cyclization of α,β-alkynic hydrazones.
Scheme 25: Controllable synthesis of 3-thiolated pyrroles and pyrrolines.
Scheme 26: Possible mechanism for controllable synthesis of 3-thiolated pyrroles and pyrrolines.
Scheme 27: Co-catalyzed C2-sulfenylation and C2,C3-disulfenylation of indole derivatives.
Scheme 28: Plausible catalytic cycle for Co-catalyzed C2-sulfenylation and C2,C3-disulfenylation of indoles.
Scheme 29: C–H thioarylation of electron-rich arenes by iron(III) triflimide catalysis.
Scheme 30: Difunctionalization of alkynyl bromides with thiosulfonates and N-arylthio succinimides.·
Scheme 31: Suggested mechanism for difunctionalization of alkynyl bromides with thiosulfonates and N-arylthio ...
Scheme 32: Synthesis of thioesters, acyl disulfides, ketones, and amides by N-thiohydroxy succinimide esters.
Scheme 33: Proposed mechanism for metal-catalyzed selective acylation and acylthiolation.
Scheme 34: AlCl3-catalyzed synthesis of 3,4-bisthiolated pyrroles.
Scheme 35: α-Sulfenylation of aldehydes and ketones.
Scheme 36: Acid-catalyzed sulfetherification of unsaturated alcohols.
Scheme 37: Enantioselective sulfenylation of β-keto phosphonates.
Scheme 38: Organocatalyzed sulfenylation of 3‑substituted oxindoles.
Scheme 39: Sulfenylation and chlorination of β-ketoesters.
Scheme 40: Intramolecular sulfenoamination of olefins.
Scheme 41: Plausible mechanism for intramolecular sulfenoamination of olefins.
Scheme 42: α-Sulfenylation of 5H-oxazol-4-ones.
Scheme 43: Metal-free C–H sulfenylation of electron-rich arenes.
Scheme 44: TFA-promoted C–H sulfenylation indoles.
Scheme 45: Proposed mechanism for TFA-promoted C–H sulfenylation indoles.
Scheme 46: Organocatalyzed sulfenylation and selenenylation of 3-pyrrolyloxindoles.
Scheme 47: Organocatalyzed sulfenylation of S-based nucleophiles.
Scheme 48: Conjugate Lewis base Brønsted acid-catalyzed sulfenylation of N-heterocycles.
Scheme 49: Mechanism for activation of N-sulfanylsuccinimide by conjugate Lewis base Brønsted acid catalyst.
Scheme 50: Sulfenylation of deconjugated butyrolactams.
Scheme 51: Intramolecular sulfenofunctionalization of alkenes with phenols.
Scheme 52: Organocatalytic 1,3-difunctionalizations of Morita–Baylis–Hillman carbonates.
Scheme 53: Organocatalytic sulfenylation of β‑naphthols.
Scheme 54: Acid-promoted oxychalcogenation of o‑vinylanilides with N‑(arylthio/arylseleno)succinimides.
Scheme 55: Lewis base/Brønsted acid dual-catalytic C–H sulfenylation of aryls.
Scheme 56: Lewis base-catalyzed sulfenoamidation of alkenes.
Scheme 57: Cyclization of allylic amide using a Brønsted acid and tetrabutylammonium chloride.
Scheme 58: Catalytic electrophilic thiocarbocyclization of allenes with N-thiosuccinimides.
Scheme 59: Suggested mechanism for electrophilic thiocarbocyclization of allenes with N-thiosuccinimides.
Scheme 60: Chiral chalcogenide-catalyzed enantioselective hydrothiolation of alkenes.
Scheme 61: Proposed mechanism for chalcogenide-catalyzed enantioselective hydrothiolation of alkenes.
Scheme 62: Organocatalytic sulfenylation for synthesis a diheteroatom-bearing tetrasubstituted carbon centre.
Scheme 63: Thiolative cyclization of yne-ynamides.
Scheme 64: Synthesis of alkynyl and acyl disulfides from reaction of thiols with N-alkynylthio phthalimides.
Scheme 65: Oxysulfenylation of alkenes with 1-(arylthio)pyrrolidine-2,5-diones and alcohols.
Scheme 66: Arylthiolation of arylamines with (arylthio)-pyrrolidine-2,5-diones.
Scheme 67: Catalyst-free isothiocyanatoalkylthiation of styrenes.
Scheme 68: Sulfenylation of (E)-β-chlorovinyl ketones toward 3,4-dimercaptofurans.
Scheme 69: HCl-promoted intermolecular 1, 2-thiofunctionalization of aromatic alkenes.
Scheme 70: Possible mechanism for HCl-promoted 1,2-thiofunctionalization of aromatic alkenes.
Scheme 71: Coupling reaction of diazo compounds with N-sulfenylsuccinimides.
Scheme 72: Multicomponent reactions of disulfides with isocyanides and other nucleophiles.
Scheme 73: α-Sulfenylation and β-sulfenylation of α,β-unsaturated carbonyl compounds.
Beilstein J. Org. Chem. 2022, 18, 549–554, doi:10.3762/bjoc.18.57
Graphical Abstract
Figure 1: Structures of naturally occurring karrikins.
Scheme 1: i) P4S10, THF; ii) 2-chloropropionyl chloride, Et3N; iii) Ph3P, NaOAc, Ac2O.
Figure 2: Target compounds with highlighted positions of oxygen to sulfur exchange.
Scheme 2: i) Lawesson’s reagent, HMDO, toluene, MW irradiation, 120 °C, 60 min.
Scheme 3: i) P4S10 or Lawesson’s reagent, see table for conditions; ii) 2-chloropropionyl chloride, Et3N, DCM...
Scheme 4: i) LiHMDS, MeI, THF, −78 °C.
Scheme 5: i) a) NaOH, MeOH/H2O, rt, Amberlyst 15 [H+], b) AcOH 70% aq, reflux, 2 h; ii) a) EtOCOCl, pyridine,...
Scheme 6: i) Lawesson’s reagent, HMDO, toluene, MW irradiation (120 °C), 60 min.
Beilstein J. Org. Chem. 2019, 15, 2603–2611, doi:10.3762/bjoc.15.253
Graphical Abstract
Scheme 1: Stable betaines I–IV.
Scheme 2: Reactions of N-triflyl-propiolamides 1 with N- and P-nucleophiles. Tf = SO2CF3.
Scheme 3: Synthesis of betaines 3 by a three-component reaction. N-triflylpropiolamides 1: R = Ph (a), 4-Cl-C6...
Figure 1: Phosphonium betaines 3 prepared. An E:Z ratio of 100:0 means that only the E-isomer was observed in...
Scheme 4: Unexpected synthesis of E-3o.
Scheme 5: Betaines 3 from propiolic acid chlorides.
Scheme 6: Two mechanistic scenarios for the formation of betaines 3.
Figure 2: Solid-state structure of E-3a (ORTEP plot), two symmetry-independent molecules in the triclinic uni...
Figure 3: Solid-state structure of E-3b·CH2Cl2 (ORTEP plot); CH2Cl2 solvate molecule not shown.
Figure 4: Solid-state structure of E-3e·H2O·CH2Cl2 (ORTEP plot). The CH2Cl2 solvate molecule is disordered. H...
Figure 5: Solid-state structure of Z-3e (ORTEP plot).
Scheme 7: Resonance structures describing the bonding in 1,2-oxaphospholes/1,5-betaines 8.
Beilstein J. Org. Chem. 2019, 15, 1984–1995, doi:10.3762/bjoc.15.194
Graphical Abstract
Figure 1: Structures of triptolide (1), triptonide (2), tripdiolide (3), 16-hydroxytriptolide (4), triptrioli...
Figure 2: Syntheses of triptolide.
Scheme 1: Berchtold’s synthesis of triptolide.
Scheme 2: Li’s formal synthesis of triptolide.
Scheme 3: van Tamelen’s asymmetric synthesis of triptonide and triptolide.
Scheme 4: Van Tamelen’s (method II) formal synthesis of triptolide.
Scheme 5: Sherburn’s formal synthesis of triptolide.
Scheme 6: van Tamelen’s biogenetic type total synthesis of triptolide.
Scheme 7: Yang’s total synthesis of triptolide.
Scheme 8: Key intermediates or transformations of routes J–N.
Beilstein J. Org. Chem. 2018, 14, 1349–1369, doi:10.3762/bjoc.14.114
Graphical Abstract
Scheme 1: Mannich reaction of N-Boc-isatin imines with ethyl nitroacetate (2) catalyzed by a cinchona alkaloi...
Scheme 2: Mannich reaction of N-Boc-isatin imines with 1,3-dicarbonyl compounds catalyzed by a cinchona alkal...
Scheme 3: Mannich reaction of N-alkoxycarbonylisatin imines with acetylacetone catalyzed by a cinchona alkalo...
Scheme 4: Mannich reaction of isatin-derived benzhydrylketimines with trimethylsiloxyfuran catalyzed by a pho...
Scheme 5: Mannich reaction of N-Boc-isatin imines with acetaldehyde catalyzed by a primary amine.
Scheme 6: Mannich reaction of N-Cbz-isatin imines with aldehydes catalyzed by L-diphenylprolinol trimethylsil...
Scheme 7: Addition of dimedone-derived enaminones to N-Boc-isatin imines catalyzed by a phosphoric acid.
Scheme 8: Addition of hydroxyfuran-2-one-derived enaminones to N-Boc-isatin imines catalyzed by a phosphoric ...
Scheme 9: Zinc-catalyzed Mannich reaction of N-Boc-isatin imines with silyl ketene imines.
Scheme 10: Tin-catalyzed Mannich reaction of N-arylisatin imines with an alkenyl trichloroacetate.
Scheme 11: Aza-Morita–Baylis–Hillman reaction of N-Boc-isatin imines with acrolein catalyzed by β-isocupreidin...
Scheme 12: Aza-Morita–Baylis–Hillman reaction of N-Boc-isatin imines with acrolein (35) catalyzed by α-isocupr...
Scheme 13: Aza-Morita–Baylis–Hillman reaction of N-Boc-isatin imines with maleimides catalyzed by β-isocupreid...
Scheme 14: Aza-Morita–Baylis–Hillman reaction of N-Boc-isatin imines with nitroolefins catalyzed by a cinchona...
Scheme 15: Friedel–Crafts reactions of N-Boc-isatin imines with 1 and 2-naphthols catalyzed by a cinchona alka...
Scheme 16: Friedel–Crafts reactions of N-alkoxycarbonyl-isatin imines with 1 and 2-naphthols catalyzed by a ci...
Scheme 17: Friedel–Crafts reaction of N-Boc-isatin imines with 6-hydroxyquinolines catalyzed by a cinchona alk...
Scheme 18: Aza-Henry reaction of N-Boc-isatin imines with nitromethane catalyzed by a bifunctional guanidine.
Scheme 19: Domino addition/cyclization reaction of N-Boc-isatin imines with 1,4-dithiane-2,5-diol (53) catalyz...
Scheme 20: Nickel-catalyzed additions of methanol and cumene hydroperoxide to N-Boc-isatin imines.
Scheme 21: Palladium-catalyzed addition of arylboronic acids to N-tert-butylsulfonylisatin imines.
Beilstein J. Org. Chem. 2015, 11, 1833–1864, doi:10.3762/bjoc.11.199
Graphical Abstract
Figure 1: Ruthenium alkylidene catalysts used in RRM processes.
Figure 2: General representation of various RRM processes.
Figure 3: A general mechanism for RRM process.
Scheme 1: RRM of cyclopropene systems.
Scheme 2: RRM of cyclopropene with catalyst 2. (i) catalyst 2 (2.5 mol %), ethylene (24, 1 atm), (ii) toluene...
Scheme 3: RRM of various cyclopropene derivatives with catalyst 2. (i) catalyst 2 (2.5 mol %), CH2Cl2 (c = 0....
Scheme 4: RRM of substituted cyclopropene system with catalyst 2.
Scheme 5: RRM of cyclobutene system with catalyst 2.
Scheme 6: RRM approach to various bicyclic compounds.
Scheme 7: RRM approach to erythrina alkaloid framework.
Scheme 8: ROM–RCM sequence to lactone derivatives.
Scheme 9: RRM protocol towards the synthesis of lactone derivative 58.
Scheme 10: RRM protocol towards the asymmetric synthesis of asteriscunolide D (61).
Scheme 11: RRM strategy towards the synthesis of various macrolide rings.
Scheme 12: RRM protocol to dipiperidine system.
Scheme 13: RRM of cyclopentene system to generate the cyclohexene systems.
Scheme 14: RRM of cyclopentene system 74.
Scheme 15: RRM approach to compound 79.
Scheme 16: RRM approach to spirocycles.
Scheme 17: RRM approach to bicyclic dihydropyrans.
Scheme 18: RCM–ROM–RCM cascade using non strained alkenyl heterocycles.
Scheme 19: First ROM–RCM–ROM–RCM cascade for the synthesis of trisaccharide 97.
Scheme 20: RRM of cyclohexene system.
Scheme 21: RRM approach to tricyclic spirosystem.
Scheme 22: RRM approach to bicyclic building block 108a.
Scheme 23: ROM–RCM protocol for the synthesis of the bicyclo[3.3.0]octene system.
Scheme 24: RRM protocol to bicyclic enone.
Scheme 25: RRM protocol toward the synthesis of the tricyclic system 118.
Scheme 26: RRM approach toward the synthesis of the tricyclic enones 122a and 122b.
Scheme 27: Synthesis of tricyclic and tetracyclic systems via RRM protocol.
Scheme 28: RRM protocol towards the synthesis of tetracyclic systems.
Scheme 29: RRM of the propargylamino[2.2.1] system.
Scheme 30: RRM of highly decorated bicyclo[2.2.1] systems.
Scheme 31: RRM protocol towards fused tricyclic compounds.
Scheme 32: RRM protocol to functionalized tricyclic systems.
Scheme 33: RRM approach to functionalized polycyclic systems.
Scheme 34: Sequential RRM approach to functionalized tricyclic ring system 166.
Scheme 35: RRM protocol to functionalized CDE tricyclic ring system of schintrilactones A and B.
Scheme 36: Sequential RRM approach to 7/5 fused bicyclic systems.
Scheme 37: Sequential ROM-RCM protocol for the synthesis of bicyclic sugar derivatives.
Scheme 38: ROM–RCM sequence of the norbornene derivatives 186 and 187.
Scheme 39: RRM approach toward highly functionalized bridge tricyclic system.
Scheme 40: RRM approach toward highly functionalized tricyclic systems.
Scheme 41: Synthesis of hexacyclic compound 203 by RRM approach.
Scheme 42: RRM approach toward C3-symmetric chiral trimethylsumanene 209.
Scheme 43: Triquinane synthesis via IMDA reaction and RRM protocol.
Scheme 44: RRM approach to polycyclic compounds.
Scheme 45: RRM strategy toward cis-fused bicyclo[3.3.0]carbocycles.
Scheme 46: RRM protocol towards the synthesis of bicyclic lactone 230.
Scheme 47: RRM approach to spiro heterocyclic compounds.
Scheme 48: RRM approach to spiro heterocyclic compounds.
Scheme 49: RRM approach to regioselective pyrrolizidine system 240.
Scheme 50: RRM approach to functionalized bicyclic derivatives.
Scheme 51: RRM approach to tricyclic derivatives 249 and 250.
Scheme 52: RRM approach to perhydroindoline derivative and spiro system.
Scheme 53: RRM approach to bicyclic pyran derivatives.
Scheme 54: RRM of various functionalized oxanorbornene systems.
Scheme 55: RRM to assemble the spiro fused-furanone core unit. (i) 129, benzene, 55 °C, 3 days; (ii) Ph3P=CH2B...
Scheme 56: RRM protocol to norbornenyl sultam systems.
Scheme 57: Ugi-RRM protocol for the synthesis of 2-aza-7-oxabicyclo system.
Scheme 58: Synthesis of spiroketal systems via RRM protocol.
Scheme 59: RRM approach to cis-fused heterotricyclic system.
Scheme 60: RRM protocol to functionalized bicyclic systems.
Scheme 61: ROM/RCM/CM cascade to generate bicyclic scaffolds.
Scheme 62: RCM of ROM/CM product.
Scheme 63: RRM protocol to bicyclic isoxazolidine ring system.
Scheme 64: RRM approach toward the total synthesis of (±)-8-epihalosaline (300).
Scheme 65: Sequential RRM approach to decalin 304 and 7/6 fused 305 systems.
Scheme 66: RRM protocol to various fused carbocyclic derivatives.
Scheme 67: RRM to cis-hydrindenol derivatives.
Scheme 68: RRM protocol towards the cis-hydrindenol derivatives.
Scheme 69: RRM approach toward the synthesis of diversed polycyclic lactams.
Scheme 70: RRM approach towards synthesis of hexacyclic compound 324.
Scheme 71: RRM protocol to generate luciduline precursor 327 with catalyst 2.
Scheme 72: RRM protocol to key building block 330.
Scheme 73: RRM approach towards the synthesis of key intermediate 335.
Scheme 74: RRM protocol to highly functionalized spiro-pyran system 339.
Scheme 75: RRM to various bicyclic polyether derivatives.
Beilstein J. Org. Chem. 2014, 10, 2089–2121, doi:10.3762/bjoc.10.218
Graphical Abstract
Figure 1: Cyclic chiral phosphines based on bridged-ring skeletons.
Figure 2: Cyclic chiral phosphines based on binaphthyl skeletons.
Figure 3: Cyclic chiral phosphines based on ferrocene skeletons.
Figure 4: Cyclic chiral phosphines based on spirocyclic skeletons.
Figure 5: Cyclic chiral phosphines based on phospholane ring skeletons.
Figure 6: Acyclic chiral phosphines.
Figure 7: Multifunctional chiral phosphines based on binaphthyl skeletons.
Figure 8: Multifunctional chiral phosphines based on amino acid skeletons.
Scheme 1: Asymmetric [3 + 2] annulations of allenoates with electron-deficient olefins, catalyzed by the chir...
Scheme 2: Asymmetric [3 + 2] annulations of allenoate and enones, catalyzed by the chiral binaphthyl-based ph...
Scheme 3: Asymmetric [3 + 2] annulations of N-substituted olefins and allenoates, catalyzed by the chiral bin...
Scheme 4: Asymmetric [3 + 2] annulations of 2-aryl-1,1-dicyanoethylenes with ethyl allenoate, catalyzed by th...
Scheme 5: Asymmetric [3 + 2] annulations of 3-alkylideneindolin-2-ones with ethyl allenoate, catalyzed by the...
Scheme 6: Asymmetric [3 + 2] annulations of 2,6-diarylidenecyclohexanones with allenoates, catalyzed by the c...
Scheme 7: Asymmetric [3 + 2] annulations of allenoate with alkylidene azlactones, catalyzed by the chiral bin...
Scheme 8: Asymmetric [3 + 2] annulations of C60 with allenoates, catalyzed by the chiral phosphine B6.
Scheme 9: Asymmetric [3 + 2] annulations of α,β-unsaturated esters and ketones with an allenoate, catalyzed b...
Scheme 10: Asymmetric [3 + 2] annulations of exocyclic enones with allenoates, catalyzed by the ferrocene-modi...
Scheme 11: Asymmetric [3 + 2] annulations of enones with an allenylphosphonate, catalyzed by the ferrocene-mod...
Scheme 12: Asymmetric [3 + 2] annulations of 3-alkylidene-oxindoles with ethyl allenoate, catalyzed by the fer...
Scheme 13: Asymmetric [3 + 2] annulations of dibenzylideneacetones with ethyl allenoate, catalyzed by the ferr...
Scheme 14: Asymmetric [3 + 2] annulations of trisubstituted alkenes with ethyl allenoate, catalyzed by the fer...
Scheme 15: Asymmetric [3 + 2] annulations of 2,6-diarylidenecyclohexanones with allenoates, catalyzed by the f...
Scheme 16: Asymmetric [3 + 2] annulations of α,β-unsaturated ketones with ethyl allenoates, catalyzed by the f...
Scheme 17: Asymmetric [3 + 2] annulations of α,β-unsaturated esters with allenoates, catalyzed by the ferrocen...
Scheme 18: Asymmetric [3 + 2] annulations of alkylidene azlactones with allenoates, catalyzed by the chiral sp...
Scheme 19: Asymmetric [3 + 2] annulations of α-trimethylsilyl allenones and electron-deficient olefins, cataly...
Scheme 20: Asymmetric [3 + 2] annulations of α,β-unsaturated ketones with an allenone, catalyzed by the chiral...
Scheme 21: Asymmetric [3 + 2] annulations of cyclic enones with allenoates, catalyzed by the chiral α-amino ac...
Scheme 22: Asymmetric [3 + 2] annulations of arylidenemalononitriles and analogues with an allenoate, catalyze...
Scheme 23: Asymmetric [3 + 2] annulations of α,β-unsaturated esters with an allenoate, catalyzed by the chiral...
Scheme 24: Asymmetric [3 + 2] annulations of 3,5-dimethyl-1H-pyrazole-derived acrylamides with an allenoate, c...
Scheme 25: Asymmetric [3 + 2] annulations of maleimides with allenoates, catalyzed by the chiral phosphine H10....
Scheme 26: Asymmetric [3 + 2] annulations of α-substituted acrylates with allenoate, catalyzed by the chiral p...
Scheme 27: Asymmetric [3 + 2] annulation of an N-tosylimine with an allenoate, catalyzed by the chiral phosphi...
Scheme 28: Asymmetric [3 + 2] annulations of N-tosylimines with an allenoate, catalyzed by the chiral phosphin...
Scheme 29: Asymmetric [3 + 2] annulations of N-tosylimines with an allenoate, catalyzed by the chiral phosphin...
Scheme 30: Asymmetric [3 + 2] annulations of N-diphenylphosphinoyl aromatic imines with butynoates, catalyzed ...
Scheme 31: Asymmetric [3 + 2] annulations of N-tosylimines with allenylphosphonates, catalyzed by the chiral p...
Scheme 32: Asymmetric [3 + 2] annulation of an N-tosylimine with an allenoate, catalyzed by the chiral phosphi...
Scheme 33: Asymmetric [3 + 2] annulations of N-diphenylphosphinoyl aromatic imines with allenoates (top), cata...
Scheme 34: Asymmetric [3 + 2] annulation of N-diphenylphosphinoylimines with allenoates, catalyzed by the chir...
Scheme 35: Asymmetric [3 + 2] annulation of an azomethine imine with an allenoate, catalyzed by the chiral pho...
Scheme 36: Asymmetric [3 + 2] annulations between α,β-unsaturated esters/ketones and 3-butynoates, catalyzed b...
Scheme 37: Asymmetric intramolecular [3 + 2] annulations of electron-deficient alkenes and MBH carbonates, cat...
Scheme 38: Asymmetric [3 + 2] annulations of methyleneindolinone and methylenebenzofuranone derivatives with M...
Scheme 39: Asymmetric [3 + 2] annulations of activated isatin-based alkenes with MBH carbonates, catalyzed by ...
Scheme 40: Asymmetric [3 + 2] annulations of maleimides with MBH carbonates, catalyzed by the chiral phosphine ...
Scheme 41: A series of [3 + 2] annulations of various activated alkenes with MBH carbonates, catalyzed by the ...
Scheme 42: Asymmetric [3 + 2] annulations of an alkyne with isatins, catalyzed by the chiral phosphine F1.
Scheme 43: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphine B1.
Scheme 44: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphine H5.
Scheme 45: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphines H13 and H12.
Scheme 46: Asymmetric [4 + 2] annulations catalyzed by the chiral phosphine H6.
Scheme 47: Kerrigan’s [2 + 2] annulations of ketenes with imines, catalyzed by the chiral phosphine B7.
Scheme 48: Asymmetric [4 + 1] annulations, catalyzed by the chiral phosphine G6.
Scheme 49: Asymmetric homodimerization of ketenes, catalyzed by the chiral phosphine F5 and F6.
Scheme 50: Aza-MBH/Michael reactions, catalyzed by the chiral phosphine G1.
Scheme 51: Tandem RC/Michael additions, catalyzed by the chiral phosphine H14.
Scheme 52: Intramolecular tandem RC/Michael addition, catalyzed by the chiral phosphine H15.
Scheme 53: Double-Michael addition, catalyzed by the chiral aminophosphine G9.
Scheme 54: Tandem Michael addition/Wittig olefinations, mediated by the chiral phosphine BIPHEP.
Scheme 55: Asymmetric Michael additions, catalyzed by the chiral phosphines H7, H8, and H9.
Scheme 56: Asymmetric γ-umpolung additions, catalyzed by the chiral phosphine A1.
Scheme 57: Asymmetric γ-umpolung additions, catalyzed by the chiral phosphines E2 and E3.
Scheme 58: Intramolecular γ-additions of hydroxy-2-alkynoates, catalyzed by the chiral phosphine D2.
Scheme 59: Intra-/intermolecular γ-additions, catalyzed by the chiral phosphine D2.
Scheme 60: Intermolecular γ-additions, catalyzed by the chiral phosphines B5 and B3.
Scheme 61: Intermolecular γ-additions, catalyzed by the chiral phosphines E6 and B4.
Scheme 62: Asymmetric allylic substitution of MBH acetates, catalyzed by the chiral phosphine G2.
Scheme 63: Allylic substitutions between MBH acetates or carbonates and an array of nucleophiles, catalyzed by...
Scheme 64: Asymmetric acylation of diols, catalyzed by the chiral phosphines E4 and E5.
Scheme 65: Kinetic resolution of secondary alcohols, catalyzed by the chiral phosphine E8 and E9.
Beilstein J. Org. Chem. 2014, 10, 1421–1432, doi:10.3762/bjoc.10.146
Graphical Abstract
Figure 1: Alkaloids produced by Streptomyces strain FORM5.
Figure 2: Part of the total ion chromatogram of the headspace extract of Streptomyces sp. FORM5 with the stru...
Figure 3: Mass spectra of a) (E)-2-(pent-3-en-1-yl)pyridine (streptopyridine E, 8), b) (1Z,3E)-penta-1,3-dien...
Scheme 1: Synthesis of streptopyridines A to E (8–12) and the 2-alkylpyridines 6 and 7.
Figure 4: Total ion chromatograms of the product mixtures of isomers 9–12 synthesized under E-selective (a) a...
Figure 5: Structures of piperidine derivatives 20–26.
Figure 6: a) Mass spectrum of streptopyridine A (12), b) mass spectrum of 12 after feeding of 2 mM 13C2-sodiu...
Scheme 2: Proposed biosynthesis of the streptopyridines. PKS: polyketide synthase; red: reduction; ta: transa...
Figure 7: Compounds detected in the headspace of Streptomyces sp. FORM5.
Beilstein J. Org. Chem. 2014, 10, 481–513, doi:10.3762/bjoc.10.46
Graphical Abstract
Scheme 1: General reaction mechanism for Ag(I)-catalyzed A3-coupling reactions.
Scheme 2: A3-coupling reaction catalyzed by polystyrene-supported NHC–silver halides.
Figure 1: Various NHC–Ag(I) complexes used as catalysts for A3-coupling.
Scheme 3: Proposed reaction mechanism for NHC–AgCl catalyzed A3-coupling reactions.
Scheme 4: Liu’s synthesis of pyrrole-2-carboxaldehydes 4.
Scheme 5: Proposed reaction mechanism for Liu’s synthesis of pyrrole-2-carboxaldehydes 4.
Scheme 6: Gold-catalyzed synthesis of propargylamines 1.
Scheme 7: A3-coupling catalyzed by phosphinamidic Au(III) metallacycle 6.
Scheme 8: Gold-catalyzed KA2-coupling.
Scheme 9: A3-coupling applied to aldehyde-containing oligosaccharides 8.
Scheme 10: A3-MCR for the preparation of propargylamine-substituted indoles 9.
Scheme 11: A3-coupling interceded synthesis of furans 12.
Scheme 12: A3/KA2-coupling mediated synthesis of functionalized dihydropyrazoles 13 and polycyclic dihydropyra...
Scheme 13: Au(I)-catalyzed entry to cyclic carbamimidates 17 via an A3-coupling-type approach.
Scheme 14: Proposed reaction mechanism for the Au(I)-catalyzed synthesis of cyclic carbamimidates 17.
Figure 2: Chiral trans-1-diphenylphosphino-2-aminocyclohexane–Au(I) complex 20.
Scheme 15: A3-coupling-type synthesis of oxazoles 21 catalyzed by Au(III)–salen complex.
Scheme 16: Proposed reaction mechanism for the synthesis of oxazoles 21.
Scheme 17: Synthesis of propargyl ethyl ethers 24 by an A3-coupling-type reaction.
Scheme 18: General mechanism of Ag(I)-catalyzed MCRs of 2-alkynylbenzaldehydes, amines and nucleophiles.
Scheme 19: General synthetic pathway to 1,3-disubstituted-1,2-dihydroisoquinolines.
Scheme 20: Synthesis of 1,3-disubstituted-1,2-dihydroisoquinolines 29.
Scheme 21: Synthesis of 1,3-disubstituted-1,2-dihydroisoquinolines 35 and 36.
Scheme 22: Rh(II)/Ag(I) co-catalyzed synthesis of 1,3-disubstituted-1,2-dihydroisoquinolines 40.
Scheme 23: General synthetic pathway to 2-amino-1,2-dihydroquinolines.
Scheme 24: Synthesis of 2-amino-1,2-dihydroquinolines 47.
Scheme 25: Synthesis of tricyclic H-pyrazolo[5,1-a]isoquinoline 48.
Scheme 26: Synthesis of tricyclic H-pyrazolo[5,1-a]isoquinolines 48.
Scheme 27: Cu(II)/Ag(I) catalyzed synthesis of H-pyrazolo[5,1-a]isoquinolines 48.
Scheme 28: Synthesis of 2-aminopyrazolo[5,1-a]isoquinolines 53.
Scheme 29: Synthesis of 1-(isoquinolin-1-yl)guanidines 55.
Scheme 30: Ag(I)/Cu(I) catalyzed synthesis of 2-amino-H-pyrazolo[5,1-a]isoquinolines 58.
Scheme 31: Ag(I)/Ni(II) co-catalyzed synthesis of 3,4-dihydro-1H-pyridazino[6,1-a]isoquinoline-1,1-dicarboxyla...
Scheme 32: Ag(I) promoted activation of the α-carbon atom of the isocyanide group.
Scheme 33: Synthesis of dihydroimidazoles 65.
Scheme 34: Synthesis of oxazoles 68.
Scheme 35: Stereoselective synthesis of chiral butenolides 71.
Scheme 36: Proposed reaction mechanism for the synthesis of butenolides 71.
Scheme 37: Stereoselective three-component approach to pirrolidines 77 by means of a chiral auxiliary.
Scheme 38: Stereoselective three-component approach to pyrrolidines 81 and 82 by means of a chiral catalyst.
Scheme 39: Synthesis of substituted five-membered carbocyles 86.
Scheme 40: Synthesis of regioisomeric arylnaphthalene lactones.
Scheme 41: Enantioselective synthesis of spiroacetals 96 by Fañanás and Rodríguez [105].
Scheme 42: Enantioselective synthesis of spiroacetals 101 by Gong [106].
Scheme 43: Synthesis of polyfunctionalized fused bicyclic ketals 103 and bridged tricyclic ketals 104.
Scheme 44: Proposed reaction mechanism for the synthesis of ketals 103 and 104.
Scheme 45: Synthesis of β-alkoxyketones 108.
Scheme 46: Synthesis of N-methyl-1,4-dihydropyridines 112.
Scheme 47: Synthesis of tetrahydrocarbazoles 115–117.
Scheme 48: Plausible reaction mechanism for the synthesis of tetrahydrocarbazoles 115–117.
Scheme 49: Carboamination, carboalkoxylation and carbolactonization of terminal alkenes.
Scheme 50: Oxyarylation of alkenes with arylboronic acids and Selectfluor as reoxidant.
Scheme 51: Proposed reaction mechanism for oxyarylation of alkenes.
Scheme 52: Oxyarylation of alkenes with arylsilanes and Selectfluor as reoxidant.
Scheme 53: Oxyarylation of alkenes with arylsilanes and IBA as reoxidant.
Beilstein J. Org. Chem. 2013, 9, 2556–2563, doi:10.3762/bjoc.9.290
Graphical Abstract
Figure 1: Antimycins: Antimycins A1, A2, A3, and A4 and non-natural antimycins referenced in the text. Antimy...
Figure 2: Schematic representation of ant biosynthetic gene clusters. L-form ant gene clusters are encoded by...
Figure 3: Proposed biosynthetic pathway for antimycins. The antimycin biosynthetic pathway is described in de...
Figure 4: σAntA comprises a new subfamily of ECF RNA polymerase σ factors. σAntA amino acid sequences were al...
Beilstein J. Org. Chem. 2013, 9, 180–184, doi:10.3762/bjoc.9.21
Graphical Abstract
Scheme 1: Synthesis of various heterocycles by a tandem A3 coupling/cycloisomerization strategy.
Scheme 2: A plausible mechanistic pathway.
Beilstein J. Org. Chem. 2012, 8, 941–950, doi:10.3762/bjoc.8.106
Graphical Abstract
Figure 1: Important metabolites in the interaction of bacteria from the Roseobacter clade with marine algae.
Figure 2: (A) Total ion chromatogram of a headspace extract from R. pomeroyi, (B) structures of lactones rele...
Figure 3: Mass spectra of the compounds 7–11 emitted by R. pomeroyi.
Scheme 1: Synthesis of compounds 7–11. For these target structures the relative configurations are shown.
Scheme 2: Enantioselective synthesis of (2R,4S)-7 and (2S,4S)-8.
Figure 4: Enantioselective GC analyses for the assignment of the enantiomeric compositions of natural (2S,4R)-...
Beilstein J. Org. Chem. 2011, 7, 897–936, doi:10.3762/bjoc.7.103
Graphical Abstract
Scheme 1: Gold-catalyzed addition of alcohols.
Scheme 2: Gold-catalyzed cycloaddition of alcohols.
Scheme 3: Ionic liquids as the solvent in gold-catalyzed cycloaddition.
Scheme 4: Gold-catalyzed cycloaddition of diynes.
Scheme 5: Gold(I) chloride catalyzed cycloisomerization of 2-alkynyl-1,5-diols.
Scheme 6: Gold-catalyzed cycloaddition of glycols and dihydroxy compounds.
Scheme 7: Gold-catalyzed ring-opening of cyclopropenes.
Scheme 8: Gold-catalyzed intermolecular hydroalkoxylation of alkynes. PR3 = 41–45.
Scheme 9: Gold-catalyzed intramolecular 6-endo-dig cyclization of β-hydroxy-α,α-difluoroynones.
Scheme 10: Gold-catalyzed intermolecular hydroalkoxylation of non-activated olefins.
Scheme 11: Preparation of unsymmetrical ethers from alcohols.
Scheme 12: Expedient synthesis of dihydrofuran-3-ones.
Scheme 13: Catalytic approach to functionalized divinyl ketones.
Scheme 14: Gold-catalyzed glycosylation.
Scheme 15: Gold-catalyzed cycloaddition of aldehydes and ketones.
Scheme 16: Gold-catalyzed annulations of 2-(ynol)aryl aldehydes and o-alkynyl benzaldehydes.
Scheme 17: Gold-catalyzed addition of carboxylates.
Scheme 18: Dual-catalyzed rearrangement reaction of allenoates.
Scheme 19: Meyer–Schuster rearrangement of propargylic alcohols.
Scheme 20: Propargylic alcohol rearrangements.
Scheme 21: Gold-catalyzed synthesis of imines and amine alkylation.
Scheme 22: Hydroamination of allenes and allenamides.
Scheme 23: Gold-catalyzed inter- and intramolecular amination of alkynes and alkenes.
Scheme 24: Gold-catalyzed cycloisomerization of O-propioloyl oximes and β-allenylhydrazones.
Scheme 25: Intra- and intermolecular amination with ureas.
Scheme 26: Gold-catalyzed cyclization of ortho-alkynyl-N-sulfonylanilines and but-3-yn-1-amines.
Scheme 27: Gold-catalyzed piperidine ring synthesis.
Scheme 28: Ring expansion of alkylnyl cyclopropanes.
Scheme 29: Gold-catalyzed annulations of N-propargyl-β-enaminones and azomethine imines.
Scheme 30: Gold(I)-catalyzed cycloisomerization of aziridines.
Scheme 31: AuCl3/AgSbF6-catalyzed intramolecular amination of 2-(tosylamino)phenylprop-1-en-3-ols.
Scheme 32: Gold-catalyzed cyclization via a 7-endo-dig pathway.
Scheme 33: Gold-catalyzed synthesis of fused xanthines.
Scheme 34: Gold-catalyzed synthesis of amides and isoquinolines.
Scheme 35: Gold-catalyzed oxidative cross-coupling reactions of propargylic acetates.
Scheme 36: Gold-catalyzed nucleophilic addition to allenamides.
Scheme 37: Gold-catalyzed direct carbon–carbon bond coupling reactions.
Scheme 38: Gold-catalyzed C−H functionalization of indole/pyrrole heterocycles and non-activated arenes.
Scheme 39: Gold-catalyzed cycloisomerization of cyclic compounds.
Scheme 40: Gold-catalyzed cycloaddition of 1-aryl-1-allen-6-enes and propargyl acetates.
Scheme 41: Gold(I)-catalyzed cycloaddition with ligand-controlled regiochemistry.
Scheme 42: Gold(I)-catalyzed cycloaddition of dienes and enynes.
Scheme 43: Gold-catalyzed intramolecular cycloaddition of 3-alkoxy-1,5-enynes and 2,2-dipropargylmalonates.
Scheme 44: Gold-catalyzed intramolecular cycloaddition of 1,5-allenynes.
Scheme 45: Gold(I)-catalyzed cycloaddition of indoles.
Scheme 46: Gold-catalyzed annulation reactions.
Scheme 47: Gold–carbenoid induced cleavage of a sp3-hybridized C−H bond.
Scheme 48: Furan- and indole-based cascade reactions.
Scheme 49: Tandem process using aromatic alkynes.
Scheme 50: Gold-catalyzed cycloaddition of 1,3-dien-5-ynes.
Scheme 51: Gold-catalyzed cascade cyclization of diynes, propargylic esters, and 1,3-enynyl ketones.
Scheme 52: Tandem reaction of β-phenoxyimino ketones and alkynyl oxime ethers.
Scheme 53: Gold-catalyzed tandem cyclization of enynes, 2-(tosylamino)phenylprop-1-yn-3-ols, and allenoates.
Scheme 54: Cyclization of 2,4-dien-6-yne carboxylic acids.
Scheme 55: Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.
Scheme 56: Gold-catalyzed tandem reactions of alkynes.
Scheme 57: Aminoarylation and oxyarylation of alkenes.
Scheme 58: Cycloaddition of 2-ethynylnitrobenzene with various alkenes.
Scheme 59: Gold-catalyzed tandem reactions of allenoates and alkynes.
Scheme 60: Gold-catalyzed asymmetric synthesis of 2,3-dihydropyrroles.
Scheme 61: Chiral [NHC–Au(I)]-catalyzed cyclization of enyne.
Scheme 62: Gold-catalyzed hydroaminations and hydroalkoxylations.
Scheme 63: Gold(I)-catalyzed asymmetric hydroalkoxylation of 1,3-dihydroxymethyl-2-alkynylbenzene chromium com...
Scheme 64: Gold-catalyzed synthesis of julolidine derivatives.
Scheme 65: Gold-catalyzed the synthesis of chiral fused heterocycles.
Scheme 66: Gold-catalyzed asymmetric reactions with 3,5-(t-Bu)2-4-MeO-MeOBIPHEP.
Scheme 67: Gold-catalyzed cyclization of o-(alkynyl) styrenes.
Scheme 68: Asymmetric gold(I)-catalyzed redox-neutral domino reactions of enynes.
Scheme 69: Gold(I)-catalyzed enantioselective polyene cyclization reaction.
Scheme 70: Gold(I)-catalyzed enantioselective synthesis of benzopyrans.
Scheme 71: Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols.