Search results

Search for "decarboxylative cyclization" in Full Text gives 5 result(s) in Beilstein Journal of Organic Chemistry.

Entry to 2-aminoprolines via electrochemical decarboxylative amidation of N‑acetylamino malonic acid monoesters

  • Olesja Koleda,
  • Janis Sadauskis,
  • Darja Antonenko,
  • Edvards Janis Treijs,
  • Raivis Davis Steberis and
  • Edgars Suna

Beilstein J. Org. Chem. 2025, 21, 630–638, doi:10.3762/bjoc.21.50

Graphical Abstract
  • feature at Ep = 1.78 V vs Ag/Ag+ (100 mV/s scan rate; see Figure 3A), and the electrolysis of pyrrolidine 6a under the optimized anodic decarboxylative cyclization conditions (entry 8, Table 1) afforded cyclic hemiaminal 12a (33% NMR yield), whose structure was proved by NMR experiments (Figure 3B). The
  • undergo the decarboxylative cyclization, but also N-mesyl-protected monoester 9f could be converted into 2-aminoproline derivative 6f in 60% yield using a graphite cathode. However, the N-o-nosyl-protecting group is not compatible with the developed electrolysis conditions, likely because it undergoes an
  • , the cyclization of the amino acid fragment-containing monoesters 9l,m afforded dipeptides 6l,m in 36% and 50% yield, respectively. Notably, the decarboxylative cyclization is compatible with the alkene moiety (product 6m). Both dipeptides 6l,m were obtained as a 67:33 mixture of diastereomers. In the
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2025

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • photocatalytic decarboxylative radical cascade alkylarylation. Proposed mechanism of the NaI/PPh3-driven photocatalytic decarboxylative radical cascade cyclization. Visible-light-promoted decarboxylative cyclization of vinylcycloalkanes. NaI/PPh3-mediated photochemical reduction and amination of nitroarenes
PDF
Album
Review
Published 22 Nov 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • Alessio Regni Francesca Bartoccini Giovanni Piersanti Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza Rinascimento 6, 61029 Urbino, PU, Italy 10.3762/bjoc.19.70 Abstract An unusual photoredox-catalyzed radical decarboxylative cyclization cascade reaction of γ,γ
  • photocatalyst. Keywords: decarboxylative cyclization; DMAT; ergot alkaloids; photoredox catalysis; radicals; Introduction Visible-light photoredox catalysis is rapidly changing the way organic chemists approach the design and synthesis of molecules by offering new synthetic disconnection opportunities that
  • of all ergot alkaloids, specifically the decarboxylative cyclization of DMAT, is still a puzzle even though a radical mechanism has been proposed (Figure 1a) [72][73]. Results and Discussion Herein, we propose that visible light irradiation of the cationic iridium photocatalyst Ir[dF(CF3)ppy]2(dtbbpy
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • terminal alkyne in 3an, and an alkyl chloride in 3ao proved compatible, associated with encouraging yields. In order to further demonstrate the utility of our protocol, a complex scaffold derived from lithocholic acid was tested, and was found to smoothly undergo the decarboxylative cyclization towards
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2019
Other Beilstein-Institut Open Science Activities