Search results

Search for "hydrogen sulfide" in Full Text gives 21 result(s) in Beilstein Journal of Organic Chemistry.

Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies

  • Lucía Campos-Prieto,
  • Aitor García-Rey,
  • Eddy Sotelo and
  • Ana Mallo-Abreu

Beilstein J. Org. Chem. 2024, 20, 3151–3173, doi:10.3762/bjoc.20.261

Graphical Abstract
  • , and either sodium hydroxide or sodium hydrogen sulfide to obtain a cyclic imine. Subsequently, the U-3CR is performed, where the cyclic imine reacts with an electron-deficient 2-fluorobenzoic acid and an isocyanide to yield a bisamide. Then, the bisamide undergoes an intramolecular SNAr reaction to
PDF
Album
Review
Published 03 Dec 2024

Investigation of a bimetallic terbium(III)/copper(II) chemosensor for the detection of aqueous hydrogen sulfide

  • Parvathy Mini,
  • Michael R. Grace,
  • Genevieve H. Dennison and
  • Kellie L. Tuck

Beilstein J. Org. Chem. 2024, 20, 2818–2826, doi:10.3762/bjoc.20.237

Graphical Abstract
  • /bjoc.20.237 Abstract The chemosensor properties of a bimetallic terbium(III)/copper(II) complex functionalized with a 4-(2-pyridyl)-1,2,3-triazole ligand for the detection of Cu2+ ions and, aqueous and gaseous hydrogen sulfide was investigated. The 4-(2-pyridyl)-1,2,3-triazole ligand functions both as
  • an antenna chromophore and a receptor for Cu2+ ions; the Cu2+ complex was shown to be a chemosensor for the detection of aqueous hydrogen sulfide. The chemosensor exhibited significant reversibility over multiple cycles, observed with the sequential addition of Na2S followed by Cu2+ ions. The limit
  • of detection for aqueous hydrogen sulfide was 0.63 μM (20 ppb). No luminescent changes of the bimetallic terbium(III)/copper(II) complex were observed in the presence of gaseous hydrogen sulfide, and thus this sensor can only be used for the detection of aqueous hydrogen sulfide. Keywords
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2024

Cyanothioacetamides as a synthetic platform for the synthesis of aminopyrazole derivatives

  • Valeriy O. Filimonov,
  • Alexandra I. Topchiy,
  • Vladimir G. Ilkin,
  • Tetyana V. Beryozkina and
  • Vasiliy A. Bakulev

Beilstein J. Org. Chem. 2023, 19, 1191–1197, doi:10.3762/bjoc.19.87

Graphical Abstract
  • elimination of hydrogen sulfide (Scheme 2). Thus, we have shown that when 2-cyanothioacetamides 1a–c react with hydrazine hydrate (3a) in ethanol, both groups (thioamide and cyano) interact with hydrazine with the elimination of hydrogen sulfide and the formation of 3,5-diaminopyrazoles 4a–c (Scheme 2). It
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2023

A new route for the synthesis of 1-deazaguanine and 1-deazahypoxanthine

  • Raphael Bereiter,
  • Marco Oberlechner and
  • Ronald Micura

Beilstein J. Org. Chem. 2022, 18, 1617–1624, doi:10.3762/bjoc.18.172

Graphical Abstract
  • . Subsequent reduction with sodium dithionite then afforded triamine 9. Another way comprised the installation of a nitroso group in compound 6 through reaction with in situ-generated nitrous acid giving nitroso compound 8. The subsequent reduction to the corresponding amine with hydrogen sulfide afforded the
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2022

Synthetic strategies for the preparation of γ-phostams: 1,2-azaphospholidine 2-oxides and 1,2-azaphospholine 2-oxides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2022, 18, 889–915, doi:10.3762/bjoc.18.90

Graphical Abstract
  • )(phenyl)phosphinate (53) was reduced with lithium aluminum hydride to 2-aminobenzyl(phenyl)phosphine (57). It was oxidized with sulfur to give zwitterionic 2-aminobenzyl(phenyl)dithiophosphinic acid (58), which underwent thermal elimination of hydrogen sulfide to yield 2-phenyl-1,3-dihydrobenzo[d][1,2
PDF
Album
Review
Published 22 Jul 2022

Synthetic accesses to biguanide compounds

  • Oleksandr Grytsai,
  • Cyril Ronco and
  • Rachid Benhida

Beilstein J. Org. Chem. 2021, 17, 1001–1040, doi:10.3762/bjoc.17.82

Graphical Abstract
  • amines with cyanoguanidine in refluxing water in the presence of CuCl2. The pink copper complexes were then treated with hydrogen sulfide to release the desired compounds. As a representative example, N1-butylbiguanide (buformin) was obtained as a hydrochloride salt, with a 47% yield (Scheme 2). Other
PDF
Album
Review
Published 05 May 2021

Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents

  • Anuj Kumar Chhalodia and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 569–580, doi:10.3762/bjoc.17.51

Graphical Abstract
  • additional unit of hydrogen sulfide can lead to the trisulfides 3 and 32 (Scheme 4C), while higher polysulfides such as 34 can arise through a metathesis reaction of two trisulfides (Scheme 4D). Also traces of methyl 3-(allylsulfanyl)propanoate (24), methyl 3-(methyldisulfanyl)propanoate (25), and methyl 3
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2021

One-pot synthesis of 1,3,5-triazine-2,4-dithione derivatives via three-component reactions

  • Gui-Feng Kang and
  • Gang Zhang

Beilstein J. Org. Chem. 2020, 16, 1447–1455, doi:10.3762/bjoc.16.120

Graphical Abstract
  • method, triazinethione derivatives were synthesized through the sulfidation of triazine using phosphorus oxychloride and hydrogen sulfide (Scheme 1c) [18]. This strategy required harsh reaction conditions and also suffered from an awful smell. Therefore, the development of facile and environmentally
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
PDF
Album
Review
Published 22 Jun 2020

The reaction of arylmethyl isocyanides and arylmethylamines with xanthate esters: a facile and unexpected synthesis of carbamothioates

  • Narasimhamurthy Rajeev,
  • Toreshettahally R. Swaroop,
  • Ahmad I. Alrawashdeh,
  • Shofiur Rahman,
  • Abdullah Alodhayb,
  • Seegehalli M. Anil,
  • Kuppalli R. Kiran,
  • Chandra,
  • Paris E. Georghiou,
  • Kanchugarakoppal S. Rangappa and
  • Maralinganadoddi P. Sadashiva

Beilstein J. Org. Chem. 2020, 16, 159–167, doi:10.3762/bjoc.16.18

Graphical Abstract
  • [7], insecticides (cartap) [8], and herbicides [9]. They are also used as key intermediates in the generation of carbonyl sulfide/hydrogen sulfide [10], the synthesis of isothiocyanates [11], asymmetric thioureas [12], and thiazolidine/thiaoxazine [13]. Therefore, as a result, numerous synthetic
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2020

Phosphodiester models for cleavage of nucleic acids

  • Satu Mikkola,
  • Tuomas Lönnberg and
  • Harri Lönnberg

Beilstein J. Org. Chem. 2018, 14, 803–837, doi:10.3762/bjoc.14.68

Graphical Abstract
  • conditions. The hydrogen sulfide ion is 105 times less basic than the hydroxide ion and, hence, able to compete with the sugar oxyanions as a leaving group upon breakdown of the thiophosphorane intermediate (the bond energies of P–O and P–S bonds are 86 kcal mol−1 and 55 kcal mol−1, respectively [103
PDF
Album
Review
Published 10 Apr 2018

A novel application of 2-silylated 1,3-dithiolanes for the synthesis of aryl/hetaryl-substituted ethenes and dibenzofulvenes

  • Grzegorz Mlostoń,
  • Paulina Pipiak,
  • Róża Hamera-Fałdyga and
  • Heinz Heimgartner

Beilstein J. Org. Chem. 2017, 13, 1900–1906, doi:10.3762/bjoc.13.185

Graphical Abstract
  • hydrogen chloride and hydrogen sulfide streams through the ethanolic solution at 0–5 °C (ice bath cooling) [33]. In analogy to 1a, hetaryl thioketones 1b,d–g were prepared from the corresponding ketones [34] by treatment with L.R. in toluene solution upon irradiation with microwaves over 2 min [32
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2017

One-pot odourless synthesis of thioesters via in situ generation of thiobenzoic acids using benzoic anhydrides and thiourea

  • Mohammad Abbasi and
  • Reza Khalifeh

Beilstein J. Org. Chem. 2015, 11, 1265–1273, doi:10.3762/bjoc.11.141

Graphical Abstract
  • . On the other hand, the usual methods for preparing thioacids involve the action of toxic and unpleasant smelling, gaseous hydrogen sulfide on carboxylic acid derivatives [46][47]. Also, thioacids as thiols have a strong and repulsive smell. The in situ generation of thioacids using odourless, easy to
PDF
Album
Supp Info
Retraction
Full Research Paper
Published 28 Jul 2015

A new and convenient synthetic way to 2-substituted thieno[2,3-b]indoles

  • Roman A. Irgashev,
  • Arseny A. Karmatsky,
  • Gennady L. Rusinov and
  • Valery N. Charushin

Beilstein J. Org. Chem. 2015, 11, 1000–1007, doi:10.3762/bjoc.11.112

Graphical Abstract
  • unequivocally by X-ray crystallography analysis, thus supporting the data of 1H and 13C NMR spectroscopy (Figure 2). The Lawesson’s reagent appears to act firstly as a source of hydrogen sulfide to reduce the C=C double bond in compound 10a, and secondly, as the thiation agent to form thieno[2,3-b]indole 12a by
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2015
Graphical Abstract
  • the copper salt with hydrogen sulfide. This methodology has subsequently been employed in a more generic sense as a preparative method for synthesis of acrylic side-chain derivatives of amino acids such as lysine, ornithine, tyrosine and serine [6][7][8], having modified the original technique by
PDF
Album
Review
Published 08 Apr 2015

Appel-reagent-mediated transformation of glycosyl hemiacetal derivatives into thioglycosides and glycosyl thiols

  • Tamashree Ghosh,
  • Abhishek Santra and
  • Anup Kumar Misra

Beilstein J. Org. Chem. 2013, 9, 974–982, doi:10.3762/bjoc.9.112

Graphical Abstract
  • halide or acetate with thiourea or thioacetate and hydrolysis of the resulting intermediates [26][27]; (b) reaction of hydrogen sulfide gas with glycosyl halides in hydrogen fluoride [39]; (c) treatment of the glycosyl hemiacetal derivatives with Lawesson’s reagent [40] and (d) treatment of 1,6-anhydro
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2013

Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

  • Nelson L. Brock,
  • Christian A. Citron,
  • Claudia Zell,
  • Martine Berger,
  • Irene Wagner-Döbler,
  • Jörn Petersen,
  • Thorsten Brinkhoff,
  • Meinhard Simon and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2013, 9, 942–950, doi:10.3762/bjoc.9.108

Graphical Abstract
  • second obvious candidate as a source for sulfur volatiles is inorganic sulfate, which can be reduced by Roseobacter clade members to hydrogen sulfide via adenylyl sulfate, 3’-phosphoadenylyl sulfate, and sulfite (Scheme 2) [17]. Hydrogen sulfide enters the amino acid pool by reaction with O-acetyl-L
  • -serine to L-cysteine. Elemental sulfur, hydrogen sulfide, or thiosulfate can be funneled via the lithotrophic sulfur oxidation (Sox) pathway to sulfate [18][19][20][21][22]. Analogous degradation steps for the selenium and tellurium derivatives of DMSP (dimethylseleniopropionate, DMSeP, and
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2013

Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides

  • Magnus Liljenberg,
  • Tore Brinck,
  • Tobias Rein and
  • Mats Svensson

Beilstein J. Org. Chem. 2013, 9, 791–799, doi:10.3762/bjoc.9.90

Graphical Abstract
  • of carbocyclic as well as heterocyclic fluorinated substrates [4][5]. Anionic nucleophiles (anions of methanol, benzyl alcohol and hydrogen sulfide) were investigated, as well as neutral nucleophiles (amines). The accuracy was well within 1 kcal/mol and the predictions can be used in a quantitative
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2013
Graphical Abstract
  • heating of 1d in chlorobenzene at 120 °C for 12 h in 78% yield (Scheme 8). According to mass spectrometry and elemental analysis, this is formally a product of H2S elimination, which was confirmed by isolation of triethylammonium hydrogen sulfide in practically quantitative yield from the reaction mixture
  • formation of thiol 17 followed by the dihydropyrrole ring closure under the impact of both quinone and amine groups and the generation of the aromatic pyrrole cycle with hydrogen sulfide extrusion by the action of base (triethylamine). Although, to the best of our knowledge, the transformation of 3H-spiro
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2013

Pseudo five-component synthesis of 2,5-di(hetero)arylthiophenes via a one-pot Sonogashira–Glaser cyclization sequence

  • Dominik Urselmann,
  • Dragutin Antovic and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2011, 7, 1499–1503, doi:10.3762/bjoc.7.174

Graphical Abstract
  • Sonogashira–Glaser cyclization sequence. Results and Discussion The conversion of 1,4-diaryl-1,3-butadiynes into 2,5-diarylthiophenes by base-mediated cyclization with sodium sulfide or sodium hydrogen sulfide is a literature-known procedure [16][17][18][19][20][21][22][23]. Therefore, we reasoned that the
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2011

Asymmetric synthesis of tertiary thiols and thioethers

  • Jonathan Clayden and
  • Paul MacLellan

Beilstein J. Org. Chem. 2011, 7, 582–595, doi:10.3762/bjoc.7.68

Graphical Abstract
  • epoxide ring opening of 18 with potassium hydrogen sulfide (Scheme 7) [18]. Epoxide ring opening by a sulfur nucleophile was also employed as the key step in the synthesis of (+)-BE-52440A (22) [22] (Scheme 8). Dimerisation of nanaomycin derivative 21 through a bridging sulfide involves a double
PDF
Album
Review
Published 10 May 2011
Other Beilstein-Institut Open Science Activities