Search results

Search for "ultrahigh vacuum" in Full Text gives 170 result(s) in Beilstein Journal of Nanotechnology.

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • to a molybdenum holder using molybdenum foil strips so that spectra could be recorded from bare and Ni-covered PCD films and bare and Ni-coated SDC with the (110) face directed outwardly. Before the measurements, the samples were annealed in ultrahigh vacuum (10−9 mbar) in a preparation chamber of
  • ultrahigh vacuum conditions. The NEXAFS spectra of the annealed samples were registered using TEY and AEY modes, which provided complementary information about the chemical state of carbon in the volume and at the surface of the samples. The mean probing depth was estimated to be no more than 10 nm for TEY
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • configurations at 110 and 125 eV, respectively [23][25][26][27][28]. Figure 1 reports valence band spectra from an ultrathin cerium oxide film before and after ultrahigh vacuum (UHV) annealing at 600 °C, acquired at the two resonant energies. Using a photon energy at the Ce4+-related resonance (110 eV), the
PDF
Album
Review
Published 10 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • sample at 773 K in ultrahigh vacuum. The presence of the underlying MoS2 film facilitates the diffusion of sodium through the graphitic coating, but not all of the deposited sodium reaches MoS2. As a result, the sodium-induced rearrangement of the carbon-coated MoS2 is less than that of the free MoS2
  • resulting hybrid and individual films of MoS2 and PyC were placed on the same sample holder to study the interaction with sodium vapor in the ultrahigh vacuum (UHV) chamber of the experimental station of the Russian–German beamline at the BESSY-II synchrotron radiation facility. Such model experiments make
  • the PyC top layer and the hybrid interface accumulate sodium. Sodium deeply penetrated into the bare MoS2 film, causing a transition from the 2H structure to the 1T´ structure due to the transfer of electron density to MoS2. Annealing of sodiated samples at 773 K in ultrahigh vacuum resulted in almost
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • nitrogen pressure between 10 and 90 mTorr. The experiment was performed in a laser ablation system “RIBER LDM 32”. It consists of three stainless steel ultrahigh-vacuum (UHV) chambers for sample introduction, PLD deposition, and X-ray photoelectron spectroscopy (XPS) analysis, isolated by UHV gate valves
PDF
Album
Full Research Paper
Published 22 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • mW emission from a YAG laser source with an MPC600 PSU quantum laser to excite the samples. The XPS measurements were conducted in an ultrahigh vacuum setup (base pressure 5 × 10−9 mbar) comprising several interconnected chambers. The analysis chamber features a RESOLVE 120 MCD5 hemispherical
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • lens is employed. The shape and size of the beam are contingent on the extraction voltage applied at the grid and the corresponding ion energy. The directed beam impacts the silicon target kept in ultrahigh vacuum (UHV) within the target chamber. A Faraday cup, connected to a multimeter, measures the
  • exploring optimal parameters to achieve stable and intense beam currents. The cost-effectiveness and versatility of this ion source make it particularly noteworthy, offering a practical solution for generating reasonable beam currents. The ion source operates within an ultrahigh-vacuum environment
PDF
Album
Full Research Paper
Published 31 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • structure of materials under reaction conditions. We demonstrate this by imaging a Pd(100) single crystal at 450 K with combined AFM/STM. The surface is compared under ultrahigh vacuum and under 0.5 bar O2 pressure showing a notable increase in RMS current, which we attribute to oxidation. Also, we study
  • relevant conditions. While much research has been conducted at room temperatures (or below) and under ambient to ultrahigh vacuum (UHV) conditions, industrial conditions expose catalysts to 1000 K and beyond in pressures ranging from ambient to 100 bar [1][2]. This difference in pressure, which influences
PDF
Album
Full Research Paper
Published 21 Mar 2025

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • 10.3762/bjnano.15.115 Abstract Ion beam-induced deposition (IBID) using Pt(CO)2Cl2 and Pt(CO)2Br2 as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed
  • sublimes at 35–40 °C at 125 mTorr. 13C NMR (C6D6, 400 MHz) δ 151.71 (1JC–Pt = 1562 Hz); IR (toluene, Figure S1, Supporting Information File 1) νco: 2077, 2118 cm−1. UHV studies Experiments were performed in a stainless-steel ultrahigh vacuum system as described elsewhere [21]. Briefly, a cooled tantalum
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • ) substrates were prepared by immersing them in a methanol bath at a temperature of 60 °C and drying them in N2 gas flow. Subsequently, the purified substrates were moved into an ultrahigh vacuum (UHV) chamber and underwent a pre-heating process at 600 °C for 30 min in order to eliminate any remaining
PDF
Album
Full Research Paper
Published 14 Oct 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • bandgap [12], which is also related to the work function. GNRs can be synthesized with atomic precision in an ultrahigh-vacuum environment using on-surface synthesis [13]. This synthesis is well known on coinage metals, namely, Cu, Ag, and Au, which possess a high electron density. To study these unique
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Signal generation in dynamic interferometric displacement detection

  • Knarik Khachatryan,
  • Simon Anter,
  • Michael Reichling and
  • Alexander von Schmidsfeld

Beilstein J. Nanotechnol. 2024, 15, 1070–1076, doi:10.3762/bjnano.15.87

Graphical Abstract
  • dominated by higher-frequency oscillations. Exemplary waveforms are shown schematically below in Figure 4. Results and Discussion The interferometer used for our experiments is part of a custom-built NC-AFM, operated under ultrahigh-vacuum (UHV) conditions [14]. The cantilever is a highly reflective (Rc
PDF
Album
Full Research Paper
Published 20 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • was monitored in ultrahigh vacuum by mass spectrometry, leading to the detection of both gaseous CO and CH4 species [45]. The production of these two volatile species is ascribed to two different processes: (i) for CH4 the removal of trapped species and (ii) for CO the electron-induced hydration of
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • . Interesting differences also appear when this precursor is compared to structurally similar iron pentacarbonyl. The present findings shed light on the recent electron-induced chemistry of Fe(CO)4MA on a surface under ultrahigh vacuum. Keywords: electron collision; focused electron beam-induced deposition
  • ultrahigh-vacuum conditions [8]. The deposits had an Fe/C/O composition similar to those obtained from Fe(CO)5, which was surprising since the methyl acrylate ligand has a high carbon content. This opens a fundamental question of how much can a change in one ligand change the outcome of electron-induced
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature
  • ; thermal noise; ultrahigh vacuum; Introduction Since the 2000s, non-contact atomic force microscopy (nc-AFM) has established itself as a scanning probe method for the topographical, chemical, and electrical mapping of the surface of a sample down to the atomic scale [1][2][3]. When used in an ultrahigh
  • -vacuum (UHV) system and at, or close to, liquid helium temperature (4–10 K, LT UHV), the method allows for the direct characterization of individual molecules with intramolecular contrast [4], opening up the field of studying on-surface reactions [5] or tip-induced chemistry [6]. The method also makes it
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • temperatures, the periodic step edges lead to a preferential growth of two distinct orientations out of four. Furthermore, we observed the growth of one, hitherto not described, azimuthal chain orientation parallel to the Ag step edges. Experimental The experiments were conducted in an ultrahigh vacuum chamber
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • [5]. Notably, when the FEBID process is performed under ultrahigh vacuum (UHV) conditions instead of the usual high vacuum conditions prevalent in SEMs, deposits with purities up to 95 atom % Fe can be obtained from Fe(CO)5 [21]. Also, the well-controlled environment of such UHV studies revealed that
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • the magnetization of the Co1 layer. The layers were deposited using electron beam evaporation (Co, Pb) and AC sputtering (Si3N4). The deposition setup had a load-lock station with vacuum shutters, allowing one to transfer the sample holder without breaking the ultrahigh vacuum in the deposition
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • of defects. Experimental A combined STM-AFM was operated in ultrahigh vacuum (5 × 10−9 Pa) and at low temperature (5 K). Surfaces of Ir(111) were cleaned by Ar+ ion bombardement and annealing. The epitaxial growth of graphene proceeded by exposing the heated (1300 K) Ir(111) surface to the gaseous
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • monocrystalline silicon. A WITec Alpha 300 M+ spectrometer with a 488 nm laser, 600 groove grating, and a 100× ZEISS objective was used for Raman measurements. The samples were deposited on a glass substrate. Ultraviolet photoelectron spectroscopy (UPS) was conducted in an ultrahigh-vacuum chamber with a base
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • velocity. In Figure 4a,b, we show two consecutive AFM images of a calcium fluoride (111) surface recorded under ultrahigh vacuum conditions. The periodic structures observed in these two raw-data images (see red unit cells in Figure 4a,b) show a striking difference compared to each other and compared to
  • optimized lattices as found by unDrift are shown as red lines. Only the centers of the autocorrelations are shown. (a, b) Two consecutive up images recorded with high-resolution AFM on calcite(10.4) in ultrahigh vacuum. The images show several defects, whose positions are marked with colored crosses in both
  • the corresponding drift-corrected images are shown on the right side. In all images, the unit cell used for drift correction is shown as a red quadrangle. Images (a–d) show the atomic structure of calcium fluoride (111) recorded with high-resolution AFM in ultrahigh vacuum. Images (e–h) and (j–m) were
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • composition and morphology of FEBID deposits fabricated in an ultrahigh-vacuum (UHV) chamber were explored on different surfaces and at varied beam currents. In the gas phase, dissociative ionization was found to lead to significant carbon loss from this precursor, and about 50% of the chlorine was on average
  • ; quantum chemical calculation; ultrahigh vacuum; Introduction In recent years, gold nanostructures have received much attention owing to their dielectric properties [1], their biocompatibility [2], and their electrical properties [3][4], which enable a multitude of exciting applications in the field of
  • . [26] under the term focused-electron-beam-induced mass spectrometry (FEBiMS). In this approach, ion-extraction mass spectrometry, in close proximity to the forming FEBID structure, is used to analyze the charged, desorbing ligand fragments. Another approach in this direction is to combine ultrahigh
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • applications of KPFM are extremely broad. It is now used by physicists, chemists, and biologists to characterize the nanoscale electronic/electrostatic properties of an ever-expanding range of materials, interfaces, and devices, in ambient conditions, under ultrahigh vacuum, or at the liquid–substrate
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • flat conducting substrates, such as metal surfaces and highly oriented pyrolytic graphite (HOPG), under ultrahigh vacuum (UHV) conditions, at solid/air or solid/liquid interfaces [23][24][25][26][27][28]. Although UHV-STM offers high-resolution imaging, it requires large, complex, and expensive
PDF
Album
Review
Published 23 Aug 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • attachment of NHCs to gold and the properties of the corresponding monolayers have been studied using conventional surface science techniques under ultrahigh-vacuum conditions [13][14]. NHC monolayers have also been used in applications such as surface-enhanced Raman spectroscopy and surface plasmon
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • paragraph, KPFM measurements can be performed in ultrahigh vacuum (UHV) at an optimal surface–tip distance of the order of a few nanometres [34] with particular attention to the sample preparation either in the deoxidation and cleaving process. Effect of the illumination on the VCPD In the Results section
PDF
Album
Full Research Paper
Published 14 Jun 2023
Other Beilstein-Institut Open Science Activities