Search results

Search for "NIR light" in Full Text gives 33 result(s) in Beilstein Journal of Nanotechnology.

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • minimally absorbed by tissue chromophores and water [24]. Therefore, tunable plasmonic nanoparticles that can respond to NIR light and can be manipulated with a magnetic field hold great promise. Among various magnetic nanoparticles, cobalt nanoparticles have attracted much interest due to their strong
PDF
Album
Full Research Paper
Published 14 Aug 2017

Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties

  • Ionel Stavarache,
  • Valentin Adrian Maraloiu,
  • Petronela Prepelita and
  • Gheorghe Iordache

Beilstein J. Nanotechnol. 2016, 7, 1492–1500, doi:10.3762/bjnano.7.142

Graphical Abstract
  • and 500 °C have very similar values we present in the following the response speed data obtained on the samples deposited at 400 °C. Figure 8a presents the response speed characteristics of the photodetector test structure fabricated at 400 °C, exposed to pulsed NIR light (808.5 nm) with different
  • bias respectively; b) spectral detectivity for Al/n-Si/Ge:SiO2/ITO structures obtained at different temperatures. Photovoltaic response speed of the photodetector structure (fabricated at 400 °C) under pulsed (Pin = 7.6 mW) NIR light (808.5 nm laser): (a) with frequency of 1000, 2000, 3000 and 4000 Hz
PDF
Album
Full Research Paper
Published 21 Oct 2016

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • as low toxicity [11], sharp emission bandwidths, large anti-Stokes shifts [12] and high resistance to photobleaching and photoblinking [13]. NIR light can non-invasively penetrate living organisms deeply because the excitation wavelength is within the optical transparency window of tissues (700–1000
PDF
Album
Full Research Paper
Published 03 Dec 2015

Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

  • Li-wei Liu,
  • Si-yi Hu,
  • Yin-ping Dou,
  • Tian-hang Liu,
  • Jing-quan Lin and
  • Yue Wang

Beilstein J. Nanotechnol. 2015, 6, 1781–1787, doi:10.3762/bjnano.6.182

Graphical Abstract
  • -infrared region (NIR) emission, such as PbSe, PbS, and CuInS2 [7][8]. These are non-cadmium-based QDs, and the use of NIR light solves the autofluorescence problem through the reduction of the fluorescence background [9][10][11]. Previous research has demonstrated that Ag2S QDs may be good candidates for
PDF
Album
Full Research Paper
Published 24 Aug 2015

Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

  • Cheng Huang,
  • Alexander Förste,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1205–1211, doi:10.3762/bjnano.6.123

Graphical Abstract
  • wavelength-selective optical filters. In the case of our examples they let NIR light pass and block photons with longer wavelengths. It is also possible to combine the perforated metal films with micelle lithographic technique [34][35] to implant gold dots with diameter of 10 nm into the holes to form
PDF
Album
Full Research Paper
Published 26 May 2015

Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: enhancing the photocatalytic activity of rutile with a pyrochlore phase

  • Desiré M. De los Santos,
  • Javier Navas,
  • Teresa Aguilar,
  • Antonio Sánchez-Coronilla,
  • Concha Fernández-Lorenzo,
  • Rodrigo Alcántara,
  • Jose Carlos Piñero,
  • Ginesa Blanco and
  • Joaquín Martín-Calleja

Beilstein J. Nanotechnol. 2015, 6, 605–616, doi:10.3762/bjnano.6.62

Graphical Abstract
  • , USB4000+) with a UV–vis–NIR light source (Ocean Optics, DH-2000-BAL). Results and Discussion Inductively coupled plasma–atomic emission spectroscopy Table 1 shows the weight percentage values of Tm with respect to TiO2, obtained by ICP–AES and calculated as the arithmetic average of the values obtained
PDF
Album
Full Research Paper
Published 02 Mar 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • emission of light at shorter wavelength than the excitation wavelength [91]. UCNP feature a reduced cytotoxicity compared to QD and are, in contrast to fluorescent dyes or QD, excited by near infrared (NIR) light. By using long-wavelength NIR instead of ultra violet (UV) light, background autofluorescence
  • typically caused by collagen and other autofluorescent structures of tissues is dramatically reduced [92]. NIR light penetrates deeper into biological tissue and thus in vivo tracking of UCNP holds promising applications [93]. The properties, synthesis as well as options of modifications and applications of
PDF
Album
Review
Published 23 Jan 2015

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • longitudinal absorption peak within the range from 600 to 1500 nm [6]. It is well recognized that near infrared (NIR) light is able to penetrate the human tissue up to a few centimeters since water and blood cells absorb light only minimally at this region. AuNRs can be designed to absorb light specifically in
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014
Other Beilstein-Institut Open Science Activities