Search results

Search for "adsorbate" in Full Text gives 128 result(s) in Beilstein Journal of Nanotechnology.

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • adsorbate [9][10][11]. However, at such interfaces, vertical adsorption heights [12][13], interface dipoles (vacuum level shifts) [9][14] and consequently the energy level alignment [15][16][17] are affected by fluorination. Furthermore, fluorination can change the molecular multilayer growth [18][19][20
  • the photon energy, which allowed to determine the coherent position (PH) and the coherent fraction (fH) of the adsorbate atoms [66][69]. The former gave the adsorption distance in terms of the lattice spacing of the silver substrate: dH = d0(n + PH) (typical precision < 0.05 Å), with n being an
  • integer. The coherent fraction 0 ≤ fH ≤ 1 describes the degree of vertical order of the adsorbate atoms, with fH = 0 for a completely disordered system and fH = 1 for all probed adsorbate atoms having the same adsorption distance. XSW measurements were performed for two (sub)monolayer coverages of F4PEN
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • corresponding epitaxy matrix as well as the lattice parameters are summarized in Table 1. We used the projection method proposed by Forker et al. to identify possible coincidences of the adsorbate and the substrate lattice [35]. We find more than one possible coincidence within the error margin of the epitaxy
  • ordered DBP on h-BN/Ni(111), suitable coincidences with the lowest substrate orders are the on-line coincidences (1, 2), (−1, −2), (−2, 1), and (2, −1). A comparison with reported lateral structures of DBP on Ag(111) [34] and Au(111) [33] shows very similar adsorbate lattice parameters except for the unit
  • by the LT-STM measurement shown in Figure 3b. We superimposed the STM image by the contours of the two molecules in the unit cell as well as the adsorbate lattice as determined by LEED. A DBP molecule is characterized by four bright protrusions, which correspond to the phenyl substituents oriented
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • monatomically thin buffer layers (BLs) on metal surfaces, i.e., as intermediate films that efficiently reduce the hybridization of an adsorbate with the metallic substrate. The minimization of the adsorbate–substrate coupling is motivated by the desire to preserve genuine properties of the free atom or molecule
  • resonances on surfaces are desirable because they increase the residence time of injected charge at the adsorbate, which is favorable for, e.g., energy conversion processes or the observation of vibronic progression [1]. Structural aspects of adsorption on the prominent two-dimensional materials graphene [2
  • adjacent molecules. A finite adsorbate–substrate interaction is reflected by the presence of a molecular superstructure that matches the period of the Au(111) reconstruction. However, the HOMO resonance width has decreased by a factor of three compared to its width on Pt(111). Even vibronic progression due
PDF
Album
Full Research Paper
Published 03 Aug 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • molecular adsorbate and the substrate, as was presented for CuTPP on rutile (110) [33]. The charge state of a CuTPP molecule depends on the particular localization of hydroxy groups under the molecule. For Sn-down Pc molecules, the relaxation brings the macrocycle closer to the surface, which increases long
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon

  • Hyung Jun An,
  • Jong Min Park,
  • Nazmul Abedin Khan and
  • Sung Hwa Jhung

Beilstein J. Nanotechnol. 2020, 11, 597–605, doi:10.3762/bjnano.11.47

Graphical Abstract
  • adsorption time and the type of adsorbate or dye. In order to determine the maximum adsorption capacity of KOH-900 and AC for AR1, adsorption isotherms were obtained from adsorption for 6 h with a wide range of AR1 concentrations. The adsorption isotherms and Langmuir plots are illustrated in Figure 6a and
  • bonding [57][58][59], were applied to interpret various adsorption events. In order to understand the plausible mechanism, especially in aqueous phase, adsorption over a wide range of pH conditions is very effective [60] since both the adsorbate and adsorbent can be changed in terms of charge or
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • adsorbates such as nitrogen, argon, krypton or carbon monoxide. We chose p-xylene as an adsorbate for vapour sorption to address the sorption at room temperature. To obtain a detailed view of the nanopore space, which exhibits micro-, meso- and macropores, but with an upper limit of ca. 100 nm, small-angle
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • ]. Unfortunately, the resolution between the rows is not sufficient to estimate a second (incommensurate) lattice vector of the adsorbate. We therefore only show a model for the arrangement of the atoms in the direction of the rows in Figure 6 (vector ). Bulk deposition of Sb on Au(111) A freshly prepared Au(111
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • adsorption sites specific for the anionic analytes. The turn-on of the SERS effect is explained in the context of the chemical mechanism of SERS. The adions form SERS-active sites on the silver surface enabling a charge transfer between the adsorbate and the silver surface. High-intensity SERS spectra of
  • adsorbate and the metal nanosurface, the coupling to the silver surface being mediated by adsorbed atoms (adatoms) such as Ag+, Cl−, I−, Br− [3][4][5][6]. In this context, several reports explain the SERS enhancement by the formation of stable surface complexes of atomic scale roughness. For example, a Ag
  •  2B). Comparing the Raman spectrum of salicylic acid in aqueous solution (0.1 M) with the SERS spectrum reveals that several bands shift to lower wave numbers due to the interaction of the adsorbate with the silver surface (Supporting Information File 1, Figure S3B). For example, the C=C stretching
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

Pulsed laser synthesis of highly active Ag–Rh and Ag–Pt antenna–reactor-type plasmonic catalysts

  • Kenneth A. Kane and
  • Massimo F. Bertino

Beilstein J. Nanotechnol. 2019, 10, 1958–1963, doi:10.3762/bjnano.10.192

Graphical Abstract
  • return to ground-state potential energy with additional vibrational energy. The process does not require charge extraction from the metal. Rather, it leads to an electronic excitation in the adsorbate–metal complex, forming transient adsorbate ions. The adsorbate ions can survive on metal surfaces tens
  • of femtoseconds before relaxation, which is sufficient for chemical transformation or additional vibrational energy to be transferred to the adsorbate, leading to reaction [14]. There are two mechanisms that can lead to the electronic excitation in the adsorbate–metal complex. The first is the
  • unpopulated adsorbate states. The second mechanism is the direct transfer of energy, or the direct excitation of charge carriers from the metal to unpopulated adsorbate states within the metal–reactant complex [15]. Light energy, localized at the surface of a plasmonic NP, can be transferred to a neighboring
PDF
Album
Supp Info
Letter
Published 26 Sep 2019

The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98

  • Simon Krause,
  • Volodymyr Bon,
  • Hongchu Du,
  • Rafal E. Dunin-Borkowski,
  • Ulrich Stoeck,
  • Irena Senkovska and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2019, 10, 1737–1744, doi:10.3762/bjnano.10.169

Graphical Abstract
  • , known to be a rather weakly interacting adsorbate, cannot initiate a structural contraction in downsized crystals of DUT-98. The contraction mechanism in DUT-98(1) was previously shown to depend on pore shrinkage along a reorganization of water molecules within the structure close to the Zr cluster [23
PDF
Album
Supp Info
Full Research Paper
Published 20 Aug 2019

Warped graphitic layers generated by oxidation of fullerene extraction residue and its oxygen reduction catalytic activity

  • Machiko Takigami,
  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1391–1400, doi:10.3762/bjnano.10.137

Graphical Abstract
  • equation. The decrease in the heat of adsorption activated the adsorbed state of oxygen molecules. However, lowering the heat too much led to a small interaction between the adsorbent and the adsorbate (i.e., less activation). Further evidence for the changes in the surface properties due to WGL exposure
PDF
Album
Full Research Paper
Published 12 Jul 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • the screen. The LEED images displayed here were numerically enhanced in contrast. The simulated LEED patterns were calculated according to kinematic theory taking into account the presence of different symmetry-equivalent domains of the adsorbate. The STM images were recorded at RT using Pt/Ir tips in
  • intermolecular interactions compared to a commensurate structure. Briefly speaking, this is due to the fact that the lattice of the adsorbate and the substrate have less common Fourier components and that the energy gain related to the interfacial interactions is thus smaller [33]. STM images (Figure 4c) show
  • orientation of the TNAP molecule is rather similar in both structures. Because the pure HTPEN phase is commensurate, while the pure TNAP phase is of the point-on-line type, we propose that the stronger adsorbate/substrate interaction of the HTPEN is responsible for the commensurability of second order of the
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • adsorptive capacity of the adsorbent for the adsorbate under examination and was calculated for the adsorption of serum proteins on PLGA NPs. SDS-PAGE analysis of corona proteins After protein adsorption and the last centrifugation step the pellet was resuspended under shaking (1200 rpm, 22 °C) in 30 µL
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • the Lorentz–Lorenz relationship and calculated as: where Vads is the volume of the liquid adsorptive in pores, B0 and Bs are the volume polarizability of the film before and during adsorption, Bt is the volume polarizability of the adsorbate multilayer that develops on top of the layer, d0 and dt are
  • the thickness of the layer and the adsorbate multilayer, respectively, Vmol is the molecular volume of the adsorptive, and αads is the polarizability of the adsorptive molecule. If swelling occurs, dt is ignored in the equation and only the layer thickness is taken into account, as reported in [49
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • in this model. The chemisorptive contributions to the TMPP–metal binding energy may lead to a charge transfer between molecule and surface [41]. This constitutes a local perturbation for electronic, structural [42][43] and magnetic [44][45] properties of the adsorbate as well as of the substrate
  • a qualitative picture of the dynamics of the adsorbate on the surface as well as hints on the self-assembly and formation of covalently bonded structures. Differences in binding energies are an indicator of how easy the molecules change their positions on the surface in order to produce self
  • another, it will play an important role in the dynamics of the adsorbate on the surface. Electronic structure and magnetic properties We start our discussion with the magnetic properties of the adsorbed molecules. We found that the magnetic moments are stable with respect to a change in the position of
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • . CO2 was used as an adsorbate and its concentration into the chamber was controlled with He as a diluting gas. A total gas flow of 50 mL (STP)·min−1 was used in all the experiments and each gas flow was controlled separately using an Alicat Scientific MC-100SCCM-D/5M mass-flow controller. Prior to each
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • withdrawing functional molecule. If the adsorbate is a donor, the value of the Mulliken charge must be positive; if it is negative, it is an acceptor molecule. According to Table 1, NO shows acceptor and CO shows donor properties [34][35][36]. The band structure analysis can further explain the gas
  • between the adsorbate and AGNR by introducing the hopping integral parameter (t′), was formulated. Then, the molecular adsorption effect on the carrier velocity was investigated in the form of current–voltage properties. The DFT calculations study was performed to further investigate gas molecule
PDF
Album
Full Research Paper
Published 04 Mar 2019

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

  • Yarong Su,
  • Yuanzhen Shi,
  • Ping Wang,
  • Jinglei Du,
  • Markus B. Raschke and
  • Lin Pang

Beilstein J. Nanotechnol. 2019, 10, 549–556, doi:10.3762/bjnano.10.56

Graphical Abstract
  • plasmon resonances of the nanostructured metal surface when excited by incident light. The generally weaker chemical enhancement mechanism (CE) is thought to be associated with electronic interactions such as charge redistribution, hybridization, or other interactions between molecular adsorbate and the
  • dependent on the local atomic environment of the adsorbate. Optical properties, such as the locations of the optical transitions, oscillator strengths, and homogeneous linewidths, are also critical for molecule–metal complex systems [29]. With improved knowledge of the resonance characteristics and
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • means of split-image technique [21] in which both the adsorbate layer and the substrate are recorded with molecular and atomic resolution, respectively, in a single frame. The details of calibration and correction of STM images is given in the section 5 of Supporting Information File 1. A 5 μL droplet
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Removal of toxic heavy metals from river water samples using a porous silica surface modified with a new β-ketoenolic host

  • Said Tighadouini,
  • Smaail Radi,
  • Abderrahman Elidrissi,
  • Khadija Haboubi,
  • Maryse Bacquet,
  • Stéphanie Degoutin,
  • Mustapha Zaghrioui and
  • Yann Garcia

Beilstein J. Nanotechnol. 2019, 10, 262–273, doi:10.3762/bjnano.10.25

Graphical Abstract
  • of adsorbent to be determined at equilibrium. The Langmuir isotherm model, which considers all adsorbent sites to be at equal energy with no adsorbent/adsorbate interactions, is one of the most popular. The non-linearized form of the Langmuir isotherm equation is given below [64][65]: Where qe is the
PDF
Album
Full Research Paper
Published 23 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • deactivate bacteria by damaging its cell membrane and DNA [50]. It is known that electrostatic adsorbent–adsorbate interactions do occur in solution at pH values either above or below the pHpzc of the adsorbent [51]. Based on the latter, it is believed that the composite adsorbent material in this study does
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • nanoplates), whereas the lowest sensitivity corresponded to ZnO nanorods with a large diameter (i.e., low surface-to-volume ratio). The efficiency of sedimentation is also related to the electronegativity of adsorbate: it has been shown that all observed ZnO morphologies exhibited significantly higher
  • compounds with adsorbate than bonds, which are located on nonpolar surfaces. It follows from the experiments that, in concentrated solutions, the CV measurements clearly reflect the process quality, whereas in the low concentration range, the measurements show poor sensitivity. Differential pulse
  • effectiveness of sedimentation is directly related to the electronegativity of the adsorbate: substances with higher electronegativity form stronger bonds with the ZnO surface and exceed the monolayer range. This was supported by the fact that a significantly better adsorption of lead ions was observed compared
PDF
Album
Full Research Paper
Published 11 Sep 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • and transmission electron microscopy (TEM). The SERS efficiency was tested by adsorption of 2,2'-bipyridine as a molecular reporter, whose SERS spectrum was interpreted by DFT, in order to gain information on the adsorbate and the interaction of the molecule with the metal surface. To our knowledge
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • silver metal surface. Moreover, the SERS effect is switched on only after the electronic coupling of the adsorbate to the silver surface at SERS-active sites. The experiments presented in this study highlight the SERS-activating role played by ions such as Cl−, Ag+, Mg2+ or Ca2+, which is a process that
  • added to metal colloids to enhance the Raman signal of the analytes. This phenomenon can be explained by two distinct mechanisms: the electromagnetic mechanism and the chemical effect. Each mechanism is believed to contribute complementary to the Raman scattering enhancement of the adsorbate in SERS
  • surfaces has also been proposed by Muniz-Miranda and Sbrana [18]. In contrast to the electromagnetic mechanism, the chemical effect requires an electronic contact between adsorbate and metal surface [14]. The enhancement factor for the chemical effect is estimated to be between 10–100 [8]. In this study
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • theoretical understanding for the pinning/depinning transition, a systematic experimental investigation of how the relevant physical parameters (such as lattice mismatch, substrate-interaction strength, adsorbate rigidity, driving force, and temperature) influence the frictional response, e.g., from a
PDF
Album
Review
Published 16 Jul 2018
Other Beilstein-Institut Open Science Activities