Search results

Search for "adsorption energy" in Full Text gives 71 result(s) in Beilstein Journal of Nanotechnology.

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • of surface between the molecules) and thus provide only a limited adsorption energy per area. We propose that the repulsive intermolecular interactions that we discussed above are related to negative partial charges on the electron-rich sulfur atoms at the periphery of the HTPEN molecule. The
  • transforms into a compressed structure of the point-on-line type with a by 9% smaller unit cell. Presumably, the related gain in the adsorption energy per area overcompensates the loss in interfacial energy due to the lifting of the registry of the structure with the substrate (commensurate/point-on-line
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • exposed to each of these gas molecules and its band structure and I–V characteristic variations before and after gas adsorption are studied; also, the adsorption energy and charge transfer between gas molecules and the AGNR surface are calculated and discussed. In the adsorption process of CO, different
  • and C–N–O angle of 90.1°. The bond length of N–O was 1.24 Å after adsorption, which was an increase by 0.07 Å, as presented in Figure 4. The data presented in Table 1 gives the CO and NO adsorption energy on the AGNR and the amount of charge between each gas molecule and the substrate, which is
  • calculated using Mulliken population analysis. The adsorption energy (Ea) of the gas molecules on the AGNR is calculated by the expression that follows [32]: where E(AGNR+gas), EAGNR and Egas are the total energy of the gas molecule on the AGNR, the relaxed AGNR, and a single gas molecule, respectively. The
PDF
Album
Full Research Paper
Published 04 Mar 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • catalyst. Therefore, we calculated the adsorption energy (ΔEads) of CO2 and H2O on TM-doped BN monolayers. The ΔEads of all structures is calculated using ΔEads = Egas–catal − Egas − Ecatal, where Egas–catal represents the energy of the whole absorbed structure, and Egas and Ecatal represent the energy of
  • parameters, such as C–O bond length (Figure 1b) and the angle (Figure 1c) of the CO2 molecule adsorbed onto the TM-doped BN. As shown in Figure 1a, there are significant differences in the CO2 adsorption on the various TM-doped BN monolayers, where the system with the more negative value of adsorption energy
  • means a stronger interaction. Therefore, it can be seen clearly from Figure 1a that there is weak adsorption between CO2 and some of the TM-doped BN monolayers, including Sc, Mn, Fe, Co, Ni, Zn, Ru, Rh, Pd and Ag, whose adsorption energy values are not negative enough to satisfy the requirements as
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • happens while approaching a surface or an adatom from the top, a jump to contact also occurs while approaching the adatom laterally parallel to the surface. Because the corrugation energy in metallic surfaces is usually 1/10 to 1/3 of the adsorption energy [45], this jump can even be larger in the lateral
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • authors. NH3 adsorbed on rGO has a smaller adsorption energy than other gases. Strong hydrogen bonds were formed between hydrogen atoms (NH3) and the residual oxygen atoms on rGO, facilitating the interaction of NH3 with rGO. Thus the selectivity to NH3 was good. The authors found that water molecules
  • authors [95] added n-type semiconductor SnO2 to the NiO–graphene hybrids (p-type) to form p–n heterojunctions and found that the sensitivity of the SnO2–NiO–graphene sensor was about 10-times that of the NiO–graphene sensor. The authors claimed that the low adsorption energy of NO2 on the surface of SnO2
PDF
Album
Review
Published 09 Nov 2018

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • is the most reactive surface, which is consistent with our work as demonstrated below. Two indicators, namely the adsorption energy (AE) and dissociation energy (DE, energy change from physical adsorption to dissociative adsorption), are employed for the analysis. The surface models are shown in
  • CH4 oxidation based on the criteria of adsorption energy and dissociation energy. These calculations were experimentally examined with the use of CuO NBs comprised of predominantly (001) surfaces, which performed better than CuO NBs and NPs, achieving almost complete oxidation at a temperature of 600
  • reactant to product). Based on our tests, both spin-polarization and vdW corrections are necessary, especially for the calculation of intermediate radicals involved in CH4 oxidation (e.g., CH2*, CH* and O*). During the quick screening of surfaces for CH4 adsorption, the adsorption energy (AE) and
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • physisorption was theoretically studied by Furmaniak and co-workers [42]. Using the hyper-parallel tempering Monte Carlo method, they found that the influence of the oxygen functionalities is more pronounced at lower relative pressures (P/P0 < 0.3) and attributed it to the increase in the adsorption energy
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • . The binding position and adsorption energy are analyzed in detail. In terms of the projected density of states (PDOS) and orbital contribution, our results offer a deep insight into the Fermi-level pinning mechanism. In addition, we expand the calculations to other 2D layered materials including GaS
  • force are converged to 10−6 eV and 0.001 eV/Å, respectively. The calculations on band structures and charge density are undertaken with an energy cut-off of 500 eV for the plane-wave expansion and Monkhorst–Pack k-point meshes of 3 × 3 × 1 in the whole Brillouin zone. The adsorption energy (binding
  • alternating corners (S–X–S) in a honeycomb network. Figure 1 illustrates the top and side view structures of the favorable NO and NO2 adsorption position on the 3 × 3 supercell of XS2 (X = Mo, W), and Table 1 summarizes the corresponding values of adsorption energy and magnetic moment. The equilibrium height
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Dynamics and fragmentation mechanism of (C5H4CH3)Pt(CH3)3 on SiO2 surfaces

  • Kaliappan Muthukumar,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2018, 9, 711–720, doi:10.3762/bjnano.9.66

Graphical Abstract
  • calculations. Different spin states (i.e., in each case the two lowest possible spin states) were considered, and only the results of the ground state are reported below. The adsorption energy (EA) was defined as EA ≡ ΔE = Etotal − Esubstrate − Eadsorbate, where Etotal, Esubstrate, and Eadsorbate are the
PDF
Album
Full Research Paper
Published 23 Feb 2018

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • monolayers, the adsorption energy, Ead(Li), is calculated using Equation 1: where EMX2+Li and EMX2 are the total energy of the MX2 monolayer with and without Li adsorption, respectively. ELi is the energy of a Li atom in bulk material. The calculated adsorption energy of Li on the stable phase of the MX2
  • monolayers is shown in Figure 4. The adsorption energy has positive values for Li adsorbed on 2H-WS2 and 2H-WSe2, which indicates that Li cannot be adsorbed on these two compounds and they are not ideal anodes for LIBs. The other compounds have negative values of adsorption energy. The adsorption energy of
  • absolute value of the adsorption energy for Li adsorbed on other compounds is larger than that of 2H-MoS2, so other MX2 compounds are also good anode candidates for LIBs. The adsorption energy as a function of the bandgap of the MX2 monolayer is show in Figure 4. It can also be seen from the figure that
PDF
Album
Full Research Paper
Published 15 Dec 2017

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

  • Hao Tang,
  • Nathalie Tarrat,
  • Véronique Langlais and
  • Yongfeng Wang

Beilstein J. Nanotechnol. 2017, 8, 2484–2491, doi:10.3762/bjnano.8.248

Graphical Abstract
  • reference configuration (HS, fcc), the adsorption energy is calculated to be −1.86 eV while the vdW contribution is found to be −1.70 eV. This small energy difference confirms the physisorption of FeTPP on Au(111). The molecule–surface distance of 3.63 ± 0.06 Å is consistent with the presence of the four
  • sites of Ag(111) and Cu(111) surfaces (Figure 8). The adsorption energy for HS FeTPP on Ag(111) is −4.99 ± 0.01 eV with a molecule–surface distance of dFeTPP-Ag(111) = 3.06 ± 0.01 Å and an Fe–surface distance of dFe-Ag(111) = 2.82 ± 0.01 Å. On Cu(111), the adsorption energy of HS FeTPP is −4.85 ± 0.02
  • , has an adsorption energy of −1.83 ± 0.02 eV with a contribution of vdW interactions of −1.70 eV, and the central porphyrin macrocyle is at a distance of 3.63 ± 0.06 Å above the surface. These physisorption characteristics were confirmed by a small charge transfer (0.24e) from the molecule to the
PDF
Album
Full Research Paper
Published 23 Nov 2017

Modelling focused electron beam induced deposition beyond Langmuir adsorption

  • Dédalo Sanz-Hernández and
  • Amalio Fernández-Pacheco

Beilstein J. Nanotechnol. 2017, 8, 2151–2161, doi:10.3762/bjnano.8.214

Graphical Abstract
  • included. Second, the detailed adsorption state, coverage and order, as well as the electron irradiation, may significantly alter the values for attempt frequency, adsorption energy, and dissociation cross section, as well as the order of desorption [44][45][46][47][48]. These factors are not considered
  • isotherms [50], which are variants of type II and III, respectively, with <θ> becoming saturated at high pressures, are not found in these FEBID frequency maps, since we are not considering any ML saturation mechanism here. Saturation due to effects such as a fast decrease of adsorption energy with number
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Oct 2017

Stable Au–C bonds to the substrate for fullerene-based nanostructures

  • Taras Chutora,
  • Jesús Redondo,
  • Bruno de la Torre,
  • Martin Švec,
  • Pavel Jelínek and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 1073–1079, doi:10.3762/bjnano.8.109

Graphical Abstract
  • adsorption energy on the Au(111) surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C
PDF
Album
Full Research Paper
Published 17 May 2017

Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR

  • Piotr Urbaszek,
  • Agnieszka Gajewicz,
  • Celina Sikorska,
  • Maciej Haranczyk and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 752–761, doi:10.3762/bjnano.8.78

Graphical Abstract
  • the adsorption energy [kcal/mol] for 1,701 PXDDs adsorbed on C60 (PXDD@C60). Based on the QSPR model reported herein, we concluded that the lowest energy PXDD@C60 complexes are those that the World Health Organization (WHO) considers to be less dangerous with respect to the aryl hydrocarbon receptor
  • compounds has raised the question: How many halogenated PXDDs congeners will create a PXDD@C60 complex based on weak π–π interactions, and what is the influence of halogen substitution of dioxin congeners in these interactions? The main goal of this study was to calculate the adsorption energy for the
  • substituents) in dioxin molecules on the final adsorption energy of the complex by using in silico methods. Our model presented here may provide important information in designing new fullerene applications and assessing the risk of those interactions according to the differences in toxicity caused by the
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2017

Calculating free energies of organic molecules on insulating substrates

  • Julian Gaberle,
  • David Z. Gao and
  • Alexander L. Shluger

Beilstein J. Nanotechnol. 2017, 8, 667–674, doi:10.3762/bjnano.8.71

Graphical Abstract
  • the thermally accessible energy range. The existence of this second minimum was confirmed using energy-minimisation calculations. The molecule will adsorb with one leg on the step edge with an adsorption energy of 4.7 eV. This illustrates that subtle features in the free-energy profile can be resolved
PDF
Album
Full Research Paper
Published 21 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • charged atoms on the surface. Consequently, the adsorption energy is due to van der Waals forces, and may be less or comparable to kBT (where kB is the Boltzmann constant and T the absolute temperature) for gases at room temperature. The introduction of defects and dopant atoms into graphene can
  • drastically increase both the adsorption of pollutant molecules and the influence of gas adsorption on the electronic properties of graphene [6][30]. For instance, adsorption energy (Ea) of an NH3 molecule on regular graphene is relatively small (Ea ≤ 0.11 eV [6][30]), but it is much higher for defect (up to
PDF
Album
Full Research Paper
Published 07 Mar 2017

Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption

  • Jesús C. Echeverría,
  • Ignacio Calleja,
  • Paula Moriones and
  • Julián J. Garrido

Beilstein J. Nanotechnol. 2017, 8, 475–484, doi:10.3762/bjnano.8.51

Graphical Abstract
  • the porous texture and the interaction or adsorption energy. Molecules cover the external surface, fill the narrow micropores, and condense on meso- and macropores, depending on the relative pressure of the analyte. However, diffusion should also be taken into consideration. The ability of porous
PDF
Album
Full Research Paper
Published 21 Feb 2017

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • the absolute value of adsorption energy. At the same time, we believe that the general trend in adsorption of heavy metals by graphene surface will not be changed. Another important aspect is the recovery time. According to the transition state theory [61], the recovery time may be written as follows
  • : where T is the temperature, kB is Boltzmann’s constant and ν0 is the frequency of the desorption event, and Eads is the adsorption energy. An increase in adsorption energy will cause an increased recovery time. In fact, in the case of strong adsorption, the recovery time will be too long for the sensor
  • binding energy of different heavy metals with graphene. Anyway, a trade-off must be reached between the adsorption energy on one side and the recovery time on the other side. The graphene/SiC interface (working in resistor regime) can also function as an effective sensor for the detection of the heavy
PDF
Album
Full Research Paper
Published 22 Nov 2016

A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

  • Vardan Galstyan,
  • Elisabetta Comini,
  • Iskandar Kholmanov,
  • Andrea Ponzoni,
  • Veronica Sberveglieri,
  • Nicola Poli,
  • Guido Faglia and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2016, 7, 1421–1427, doi:10.3762/bjnano.7.133

Graphical Abstract
  • °C acetone releases more electrons than ethanol due to the interaction between the gas molecules and the adsorbed oxygen on the material surface. It may be one of the reasons of the better response to acetone. Besides, different gases have a different adsorption rate due the variation of adsorption
  • energy. Figure 7 reports the calibration curves of the RGO–ZnO and pristine ZnO nanostructures for measuring acetone at a working temperature of 250 °C. The response for both structures shows good linearity with the concentration of acetone. The response of the hybrid structure towards all examined
PDF
Album
Full Research Paper
Published 10 Oct 2016

Three-gradient regular solution model for simple liquids wetting complex surface topologies

  • Sabine Akerboom,
  • Marleen Kamperman and
  • Frans A. M. Leermakers

Beilstein J. Nanotechnol. 2016, 7, 1377–1396, doi:10.3762/bjnano.7.129

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2016

Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy

  • Michael Klocke and
  • Dietrich E. Wolf

Beilstein J. Nanotechnol. 2016, 7, 708–720, doi:10.3762/bjnano.7.63

Graphical Abstract
  • [24][27][28]. Lennard-Jones crystals If one uses the Lennard-Jones potential, for simulating dynamic force microscopy, the tip in Figure 1 in general does not remain intact, but may loose its apex atom, if it comes too close to the substrate. This can be shown simply by comparing the adsorption energy
  • (the energy, the system gains when an atom is attached to the surface) and the dissociation energy of the apex atom (the energy necessary to detach it from the tip). If the dissociation energy is overcompensated by the adsorption energy, it is more favorable for the apex atom to remain on the substrate
  • . To calculate these energies, we place a single atom onto the surface of the substrate and perform an equilibration run by applying the conjugate gradient algorithm. The difference between the total energy of the relaxed system with and without the atom is the adsorption energy. For a substrate with a
PDF
Album
Full Research Paper
Published 17 May 2016

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • adsorption the water–water interaction is modified because of the water–metal interaction, and there is no unambiguous way of disentangling both contributions to the water adsorption energy [29][36]. Results and Discussion As a first step, we consider the adsorption of water on the low-index (111) and (100
  • ) surfaces. A single water molecule binds to Pb(111) in the usual fashion [29] through its oxygen atom (see Figure 1a), however, with the relatively small adsorption energy of −0.07 eV at a coverage of 1/3. Reducing the coverage to 1/9 changes the adsorption energy by less than 10 meV. This adsorption energy
  • Å. The distances between the oxygen atoms differ to a certain extent. The shortest one is about 3.01 Å, but the average distance is 3.5 Å. In general, the adsorbed water molecules are not hydrogen-bonded to three other water molecules, but just to two. This results in a rather low adsorption energy
PDF
Album
Full Research Paper
Published 11 Apr 2016

Surface-site reactivity in small-molecule adsorption: A theoretical study of thiol binding on multi-coordinated gold clusters

  • Elvis C. M. Ting,
  • Tatiana Popa and
  • Irina Paci

Beilstein J. Nanotechnol. 2016, 7, 53–61, doi:10.3762/bjnano.7.6

Graphical Abstract
  • , dispersive interactions held an important place in determining binding methylthiolate/Au binding strengths. As illustrated by the binding data in Table 1, the adsorption energy did not follow a direct, monotonous relationship with the degree of unsaturation of the gold atoms at the binding site. Instead, a
PDF
Album
Full Research Paper
Published 18 Jan 2016

Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

  • Hironari Isshiki,
  • Jinjie Chen,
  • Kevin Edelmann and
  • Wulf Wulfhekel

Beilstein J. Nanotechnol. 2015, 6, 2412–2416, doi:10.3762/bjnano.6.248

Graphical Abstract
  • sites of the herringbone indicates higher adsorption energy at these sites. The molecules can attach here but cannot diffuse further on the surface to form larger islands at room temperature. This preferential nucleation at the elbow sites has been reported for other molecules [17][18]. In the extended
PDF
Album
Full Research Paper
Published 16 Dec 2015

Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001)

  • Anu Baby,
  • He Lin,
  • Gian Paolo Brivio,
  • Luca Floreano and
  • Guido Fratesi

Beilstein J. Nanotechnol. 2015, 6, 2242–2251, doi:10.3762/bjnano.6.230

Graphical Abstract
  • same system was later investigated with LDA and GGA by Saranya et al. [14] who also obtained a very weak adsorption energy with pentacene adsorbed at larger distances from the Al surface (3.4 Å) in LDA and comparable to the previous ones in GGA. Both papers also report Schottky barriers at the junction
  • aligned along the [110] direction [15]. A similar V-shaped deformation was also obtained in the configuration with the long molecular axis along the [010] direction but with 0.42 eV higher adsorption energy. On the contrary, other adsorption configurations would result in planar molecular geometries with
PDF
Album
Full Research Paper
Published 27 Nov 2015
Other Beilstein-Institut Open Science Activities