Search results

Search for "agglomeration" in Full Text gives 269 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • plate-like structure remained for NiFe and CoNiFe catalysts. However, in each case, some material agglomeration occurred randomly on the surface of the electrodes. No detachment of the catalyst from the surface of the nickel foam was observed. Discussion The studies showed that the addition of GO to
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • , specifically in the UV–vis range (as infrared is already applied for heating), efficient of conversion of the absorbed energy into heat (in contrast to scattering), chemical and physical stability of the nanoparticles (e.g., against agglomeration), ease of synthesis, and low cost. Coinage metals, such as Au
PDF
Album
Review
Published 27 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • at a lower cost. The most frequently used wet-chemical techniques are hydrothermal and co-precipitation techniques. Morphology, particle size, and composition can be easily adjusted using hydrothermal methods, whereas agglomeration and particle size can be controlled using the co-precipitation method
PDF
Album
Review
Published 03 Mar 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • PtNPs on the carbon support surface. Additionally, the EDX studies show that in the area of the edge of the carbon particles, the Pt signal is more intense, likely due to PtNPs overlapping, which looks like an agglomeration. XPS spectra in a wide binding energy range (Supporting Information File 1
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • enabled the ZnO nanoparticles contained in the spinning solution to maintain uniform dispersion in the batch preparation process of nanofibers by means of air flow produced through multiple pores. The airflow reduces the agglomeration of nanoparticles, thus yielding nanofibers with uniform ZnO loading. In
  • of nanofibers obtained at different air flow rates. When the air flow rate was 150 m3/h (Figure 3a), due to the excessive air flow, the fibers easily adhered to each other, making the average diameter of the fibers larger (746.86 ± 129.12 nm) and leading to serious agglomeration of nanoparticles in
  • the fibers. When the air flow rate was 100 m3/h (Figure 3b), the adhesion between fibers was weakened, resulting in the decrease of average fiber diameter (719.28 ± 108.43 nm) and a reduction of nanoparticle agglomeration in the fibers. When the air flow rate was 50 m3/h (Figure 3c), there was almost
PDF
Album
Full Research Paper
Published 23 Jan 2023

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • conjunctional bridges. TiO2 particles deposit only on the outside wall surface of the MWCNTs. Additionally, an agglomeration of TiO2 particles is only observed at the branching points, zigzag regions, and the end of MWCNTs where the defects are identified. However, the observation differs from previous studies
PDF
Album
Full Research Paper
Published 14 Dec 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • surface of CDs. They observed the change in PL characteristics of CDs during a period of one to four weeks and concluded that when amino-rich CDs come in contact with oxygen in the air, agglomeration of CDs is induced, and, hence, luminescence changes slowly from red to green color (Figure 5) [102]. A
PDF
Album
Review
Published 05 Oct 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • electrocatalysts [14][18][19]. Oxophilicity, agglomeration, and poor chemical stability of Ag require the amalgamation of Ag with other metals for a better optical and catalytic activity [20]. Chen et al. synthesised Ag nanoscale alloys containing metals such as copper, cobalt, iron, and indium via pulse film
  • , wherein we notice irregular morphologies besides agglomeration of the particles (Figure S3f, Supporting Information File 1). The increasing silver fraction in the trimetallic assemblies was observed from EDX analysis as shown in Figure S4, Supporting Information File 1. After examining the composition of
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • extract the height image from the force–distance curves acquired at each pixel. Particles were well distributed on substrates showing no agglomeration and a narrow size distribution. GNPs occur with a smooth surface and are spherically shaped when measured under liquid conditions. Particles crosslinked
PDF
Album
Full Research Paper
Published 16 Aug 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • the particles, polydispersity, and the agglomeration of particles during DLS analysis [39]. The BBR NPs prepared at a concentration of 2.0 mg/mL showed a narrow size distribution by intensity (Figure 3c). The z-average diameter of BBR NPs was 530.6 nm (Supporting Information File 1). In addition, its
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • layer at the liquid–particle interface) is another significant mechanism for heat transfer enhancement [18][19][20]. Furthermore, a number of researchers have shown that agglomeration (or clustering) of nanoparticles is another key factor that affects the thermal conductivity of nanofluids [21][22][23
  • future considerations, the system under observation should be modified with surfactants to increase stability for longer time periods, as systems without surfactant show agglomeration after a short time. Hence, this causes system destabilisation and creates sedimentation. Finally, surface modification of
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • polyols, such as high boiling point (up to 320 °C) and dielectric constant, the solubility of simple metal salt precursors, and coordinating properties for surface functionalization preventing agglomeration [27]. The ZnO NPs obtained from polyol synthesis showed excellent crystalline quality and
PDF
Album
Review
Published 27 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • found that nps smaller than 100 nm produce more ROS due to their higher surface area [29]. Properties of nps such as surface charge density and zeta potential are influential in determining their reactivity, agglomeration properties, interaction with cells, stability in complex media, and adsorption of
  • prevention of agglomeration [102]. Titania nanostructures are capable of loading molecules of various sizes, charges, and solubilities. The immobilization of drugs and their release profile is affected by the size and surface charge distribution of the drug molecule. It has been stated that for the long-term
PDF
Album
Review
Published 14 Feb 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • aggregate to minimize their high surface energies [59]. Therefore, electrostatic and steric repulsion need to be created between SPIONs to prevent agglomeration and produce a stable nanoparticle. It was also demonstrated that peptization prevents agglomeration, paving the way for the production of
  • the hydrodynamic radius by preventing agglomeration and increasing stabilization of the nanoparticles. The zeta potential values of SPION@bPEI and SPION@bPEI-Erb were measured to be +35.2 mV and +29.1 mV, respectively (Supporting Information File 1, Table S1), which is expected since the conjugation
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • reversible agglomeration, irreversible aggregation, or Ostwald ripening (Figure 7) [77][79][80][83][110]. When agglomerates or aggregates form a precipitate in colloidal solution, the process is called coagulation. The fact that such secondary processes take place in a colloidal solution of primary metal NPs
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • , magnetite NPs have some serious limitations, such as chemical reactivity, rapid oxidation, particle agglomeration, and high surface energy which may affect their biocompatibility and performance [11]. Moreover, they have low magnetization at a smaller size and the presence of iron has been associated with
  • chemistry of NPs, thereby affecting their physiochemical and biological properties [11][20]. In the present work, we synthesized a variety of MFe2O4 (M = Co, Ni, and Zn) NPs using the sonochemical technique. Particle agglomeration was prevented by using oleic acid as the surfactant [21]. Phase change of
PDF
Album
Full Research Paper
Published 02 Dec 2021

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
  • characteristics related to intermolecular interactions, which could affect agglomeration or uptake by cells, and reactivity, which could trigger toxicity. (Dummy values, lower than the minimum of observed values, were inserted where the corresponding coating was absent, in keeping with recommended practice [45
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  •  6b,c shows the aggregation of CoFe2O4 nanoparticles in some areas, in analogy with what has been reported in [25]. The formation of aggregates was confirmed by energy-dispersive X-ray spectroscopy (EDX). In correspondence with the agglomeration we observed a higher intensity of the O, Fe, and Co
PDF
Album
Full Research Paper
Published 19 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • substrate atoms, causing agglomeration of Pt atoms at specific sites. In this case, the covalent interaction between Pt atoms and atoms of the SiO2 can be described using the well-established interatomic potentials [31]. These effects can be addressed by the presented methodology in future studies. The van
PDF
Album
Full Research Paper
Published 13 Oct 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • Dieter Vollath NanoConsulting, Primelweg 3, 76297 Stutensee, Germany 10.3762/bjnano.12.81 Abstract Most of the technically important properties of nanomaterials, such as superparamagnetism or luminescence, depend on the particle size. During synthesis and handling of nanoparticles, agglomeration
  • may occur. Agglomeration of nanoparticles may be controlled by different mechanisms. During synthesis one observes agglomeration controlled by the geometry and electrical charges of the particles. Additionally, one may find agglomeration controlled by thermodynamic interaction of the particles in the
  • of an agglomerated ensemble, that is, an exponential function characterized by two parameters. In this context, it is important to realize that one has to take care of fluctuations of the entropy. Keywords: agglomeration; enthalpy; entropy; simulation; surface energy; van der Waals interaction
PDF
Album
Full Research Paper
Published 29 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • , and morphology of the products in chemical synthesis. This is also evident from the studies tabulated in Table 2, where the obtained shapes are given together with the eutectic mixture and precursor material used [79][80][81][82][83][84][85][86][87]. The aggregation/agglomeration of nanoparticles in
PDF
Album
Review
Published 18 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • + ions or growing up to the micrometer scale. Some routes stabilize Ag-NPs by nucleating silver into clay substrates [15][16], such as kaolinite [17][18][19], montmorillonite [18][19][20][21], and halloysite nanotubes [22][23][24]. The advantages are, for instance, preventing particle agglomeration
PDF
Album
Full Research Paper
Published 05 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • avoid the reassembly of the chains. Doherty et al. [38] pointed out that superparamagnetic nanofibers could prevent the uncontrolled agglomeration of particles because the residual magnetization of this material is almost zero. They applied this technology to sensing and environmental remediation and
PDF
Album
Review
Published 19 Jul 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • -quality, conformal thin films with low resistivity, to avoid many of the typical failure mechanisms such as electromigration [42][43]. This means that 3D migration of atoms (agglomeration) should be inhibited, while 2D growth (wetting) should be promoted. In contrast, in catalysis applications the ratio
  • of surface to bulk is of great importance in promoting catalytic activity. Therefore, 3D growth (agglomeration) is essential when creating a supported metal catalyst [44][45][46][47]. In this work we aim to determine the atomic-scale interactions that control the stability of small Con and Run
  • Ru and MoS2 could be enough to prevent agglomeration. As Ru was less likely to incorporate into the ML on a defective ML, growth of Ru on a defective MoS2 ML could be suitable for Ru interconnect systems. Conclusion We have presented an extensive study of the interaction of Con and Run species, with
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • will not be retained in biological media [9][10][11][12][13][14]. In biological media, AgNPs may be transformed into different forms by aggregation, agglomeration, dissolution, interaction with biomolecules, or generation of reactive oxygen species (ROS) that may lead to the coexistence of
  • Supporting Information File 1, Table S2. Although differences in the agglomeration behaviour among different AgNPs were observed depending on the dispersion media, an increase in agglomeration was generally observed in media with a higher ionic strength (CCM, mCYS, mGSH, ALF, and AGF, see Table 1). Such
  • behaviour can be attributed to the loss of electrostatic repulsion between particles due to the complexation with counter ions present in media with high ionic strength [8][47]. The presence of proteins prevented AgNP agglomeration in m(CCM+BSA), m(CYS+BSA), m(GSH+BSA) due to the formation of protein corona
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021
Other Beilstein-Institut Open Science Activities