Search results

Search for "anisotropy" in Full Text gives 231 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • Abstract The KP15 nanowires with one-dimensional properties has a defect-free surface, high anisotropy, and carrier mobility which is desirable for the development of novel nanodevices. However, the preparation of nanoscale KP15 is still inefficient. In this work, the Hansen solubility parameters of KP15
  • weak interaction between these chains [3][4]. Therefore, those 1D materials have defect-free surfaces, high anisotropy, and carrier mobility. For example, TiS3 nanowires obtained by mechanical stripping have a large carrier mobility of about 10000 cm2·V−1·s−1 [5][6][7]. Fibrous phosphorus is also a new
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • developed in order to increase the reliability of the correlations between morphology and magnetism. Using the Magn3t software, the magnetic shape anisotropy magnitude and direction of magnetite nanoparticles has been extracted for the first time directly from transmission electron tomography. Keywords
  • : electron tomography; magnetite; Python; shape anisotropy; Introduction For any nanoparticle (NP) system, among the most important pieces of physical information for scientists is information related to the morphology (size, shape, and organization) of its constituents. In nanoscale systems, this
  • anisotropy energy, and on the NP organization, through long-range dipole interactions. In other words, magnetic properties are strongly correlated with morphology. There are quite a few ways to provide primary morphological information on NP systems, each of them with specific strengths and weaknesses. A
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • using fluorescent isothiocyanate (FITC)-labelled phalloidin to analyse the distribution and local directional changes of filamentous actin. It could be seen that the microfilaments of PC-3 cells were densely arranged and ordered on the stiff substrate. The quantified anisotropy of cytoskeletal
  • images of HPV-PZ-7 and PC-3 cytoskeletal microfilaments of cells seeded on substrates with different stiffness. The scale bar of HPV-PZ-7 cells is 20 μm and the scale bar of PC-3 cells is 10 μm. (b) Anisotropy quantification maps of the fibrillar structure of HPV-PZ-7 and PC-3 cells on substrates with
  • different stiffness. FibrilTool, an ImageJ plug-in, was used to quantify the fibrillar structure in the original cytoskeleton images. Anisotropy (score between 0 and 1): 0 for no order (purely isotropic arrays) and 1 for perfectly ordered arrays (i.e., parallel fibrils, purely anisotropic arrays); “ns
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Controllable two- and three-state magnetization switching in single-layer epitaxial Pd1−xFex films and an epitaxial Pd0.92Fe0.08/Ag/Pd0.96Fe0.04 heterostructure

  • Igor V. Yanilkin,
  • Amir I. Gumarov,
  • Gulnaz F. Gizzatullina,
  • Roman V. Yusupov and
  • Lenar R. Tagirov

Beilstein J. Nanotechnol. 2022, 13, 334–343, doi:10.3762/bjnano.13.28

Graphical Abstract
  • easy-plane ferromagnets with four-fold anisotropy in the film plane [18][19]. Our conjecture is a possibility to switch the magnetic moment of a Pd1−xFex alloy film between the steady directions (90° apart) as it had been done with epitaxial iron films [20][21][22]. To realize this idea, it is
  • be written in terms of the cubic anisotropy with small tetragonal distortion. In addition, based on the guess simulations, an importance of the uniaxial anisotropy in the film plane became obvious: where αi are directional cosines for the magnetic М with respect to crystallographic axes [100], [010
  • ], [001] of the film, αu is the cosine of the angle between М and the direction of the uniaxial anisotropy axis, Ku is the in-plane uniaxial anisotropy constant. As a result of the parameter adjustment, a good agreement of the theoretical dependences with the experimental data was achieved (Figure 1 and
PDF
Album
Full Research Paper
Published 30 Mar 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • distributions of as-jetted SPNPs approached monodispersity as indicated by polydispersity indices (PDISEM) ranging from 0.11–0.19. Geometric factor analysis revealed high circularities (0.82–0.90), low anisotropy (<1.45) and excellent roundness (0.76–0.89) for all SPNPs prepared via EHD jetting. Tentatively
  • , blended SPNPs displayed higher circularity and lower anisotropy, as compared to single-protein SPNPs. Secondary statistical analysis indicated that blended SPNPs generally present combined features of their constituents, with some properties driven by the dominant protein constituent. Our study suggests
  • . Direct inspection of the minimum diameter also reveals a similar trend of TF (65 nm) > HSA > HEM ≈ MUC ≈ INS (43 nm). Comparable PDISEM values can be observed for TF, MUC, HSA and INS (0.16–0.19); HEM is the most uniform (0.11) formulation. TF, HEM, and HSA have comparable anisotropy and roundness values
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • ′ polytype; anisotropy; density functional theory; layered transition metal dichalcogenide crystals; shear modulus; Young’s modulus; Introduction Layered transition metal dichalcogenides (TMDs) have received increasing attention as important and versatile materials for new applications in different sectors
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Influence of magnetic domain walls on all-optical magnetic toggle switching in a ferrimagnetic GdFe film

  • Rahil Hosseinifar,
  • Evangelos Golias,
  • Ivar Kumberg,
  • Quentin Guillet,
  • Karl Frischmuth,
  • Sangeeta Thakur,
  • Mario Fix,
  • Manfred Albrecht,
  • Florian Kronast and
  • Wolfgang Kuch

Beilstein J. Nanotechnol. 2022, 13, 74–81, doi:10.3762/bjnano.13.5

Graphical Abstract
  • compensation temperature, a different Walker breakdown, or less uniaxial anisotropy. Conclusion XMCD-PEEM imaging of the deviation from deterministic all-optical toggle switching of a Gd26Fe74 film by single ultrashort laser pulses showed that the factors that cause this deviation can be distinguished as
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • possibility to tune the magnetic anisotropy of a single porphyrin molecule by perturbing its ligand field with the STM probe [39][40]. These results not only suggest the importance of future manipulations experiments, but also shed new lights into the potential of decoupling atoms and molecules electronically
PDF
Album
Letter
Published 03 Jan 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • also examined. Theoretical studies [18][19][20][21][22][23][24][25][26] show that to achieve high SAR values several important factors have to be taken into account, such as the geometric dimensions of particles, particle saturation magnetization, magnitude of the magnetic anisotropy constant, and
  • anisotropy constant was assumed [28][29] to be promising in magnetic hyperthermia. However, numerical simulations [30] showed that for spherical nanoparticles an increase of the uniaxial anisotropy constant leads to a decrease in SAR and a shift of the optimal particle diameters to smaller dimensions
  • is assumed for simplicity that single-domain magnetite nanoparticles are monocrystalline, so that the cubic-type magneto-crystalline anisotropy energy of the assembly is given by [25]: Here, Kc = −105 erg/cm3 is the cubic magnetic anisotropy constant [47], V = πab2/6 is the volume of a spheroidal
PDF
Album
Full Research Paper
Published 28 Dec 2021

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • of the other two materials, namely Bi-2212 and polycrystalline gold electrodes. At low T both have linear κ(T). For Bi-2212 we assume κab(T) = 0.1 T(K) W·K−1·m−1 [45] with an anisotropy κab/κc = 8 [46]. For a polycrystalline gold thin film we use κ(T) = 3 T(K) W·K−1·m−1 [32]. The heat is produced in
  • spherical (taking into account the anisotropy κab/κc = 8). In this case self-heating is dominated by the spreading heat resistance in the crystal [29][31], Rh ≃ = 23.6 K/mW at T = 20 K, where L = 30 μm is the in-plane size of the mesa. For comparison, the heat resistance of epoxy is only 2 K/mW for de = 5
PDF
Album
Full Research Paper
Published 21 Dec 2021

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • magnetocrystalline anisotropy, high saturation magnetization, and coercivity even at room temperature as compared to others [15]. The substitution of metal cations M+ for cobalt, nickel, and zinc contributes to diverse magnetic properties, morphology, and size of iron oxide NPs [13][16] along with varied tissue
  • ) values, as shown in Table 3 [24]. From Figure 2c, all samples went through saturation at an applied field of 2.0 T, except nickel ferrite. This is may be due to the presence of a strong magnetic anisotropy, which required a higher applied field to induce saturation [25]. Cobalt ferrite has the maximum
  • coercivity (883 Oe) and saturation magnetization values (56 emu/g) in comparison to other ferrites due to a high anisotropy. Also, during cationic distribution, Co+2 cations incorporate into Fe–O, whereas the cationic distribution of other divalent metals (e.g., Ni+2 or Zn+2) leads to a decrease in magnetic
PDF
Album
Full Research Paper
Published 02 Dec 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • ]. Traditionally used stabilizing agents, such as surfactants and citrate, enable the synthesis of nanoparticles with high yield and monodispersity but also cause cytotoxicity and genotoxicity even at low concentrations [9][10]. Surfactants are known to act as a template for anisotropy in plasmonic metal
  • surfactant for synthesizing anisotropic nanoparticles with high yield and monodispersity. The surfactant induces anisotropy during the growth of nanoparticles and enables NIR absorption capability due to longitudinal surface plasmon resonance (LSPR) [11]. However, despite the superior plasmonic properties
  • carrageenan in the synthesis of nanomaterials that are nontoxic. The review begins by discussing widely used wet chemical methods of synthesizing anisotropic plasmonic metal nanomaterials. We also give insight in growth mechanisms during the initiation of anisotropy in the presence of a surfactant. This
PDF
Album
Review
Published 18 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • by SQUID magnetometry in a field parallel to the film in the normal state at T > Tc. A significant hysteresis of M(H) reveals the in-plane anisotropy of Co films (albeit with a small coercive field, HC ≈ 30 Oe), consistent with earlier studies [44][45][46][47]. Figure 1c shows a numerical simulation
  • are done with the same Iac = 1 mA, the current self-field is not changing and, therefore, cannot cause modulation of MR. (iv) Remagnetization of F-layers can contribute to the flux-flow phenomenon only if it generates the perpendicular field component. Since our Co layers have in-plane anisotropy [43
PDF
Album
Full Research Paper
Published 17 Aug 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • under compression but strong under tension, (4) anisotropy in fibre orientation, and (5) presence of fluid in the contact area. Adaptation to fractal substrate surfaces due to hierarchical organization Hairs with high aspect ratios in the hairy systems and internal fibres/filaments of smooth systems
  • represents their main structure/functional similarity to hairy pads. Anisotropy in fibre orientation Since fibres are normally not oriented perpendicularly to the pad surface (Figure 7), but rather at some angle (45–60°) and sloped into the distal direction, they do not buckle but rather bend under load
  • , which makes the pad material even more flexible. The structural anisotropy of the pad material is also responsible for the frictional anisotropy [129]. The friction is higher while the pad is sliding in a proximal direction because the fibres of smooth pads or hairs of hairy pads can be more easily
PDF
Album
Review
Published 15 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • SiO2/Si substrate were irradiated on one half with 25 keV helium ions. It was found that at a dose of 2 × 1015 ions/cm2 a domain wall could be injected into the structure due to the introduction of lattice defects that locally reduced the perpendicular magnetic anisotropy. By raising the dose slightly
  • resolution capability of the helium ion beam enabling the creation of a sharper energy barrier at the domain wall. Later work in this area employed similar helium ion doses (1–4 × 1015 ions/cm2) to locally reduce the perpendicular magnetic anisotropy in a Co/Pt multilayered thin film [50]. Here, patterns
  • and the underlying substrate on the magnetic modification obtained. It was found that helium ion bombardment influenced the magnetic anisotropy in both layers of the structure, strongly reducing the saturation magnetization of the layer system. Moreover, the behavior observed correlated with both the
PDF
Album
Review
Published 02 Jul 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • patterning without affecting the topography of the films [32]. The local modification of the magnetic properties, in particular anisotropy and exchange coupling (including the chiral Dzyaloshinskii–Moriya interaction), originates from structural modifications, such as interface structure, atomic ordering
  • , atomic composition, and crystallographic phase [33][34]. Here, the impact of He irradiation on the ferromagnetic multilayer [Co0.6/Pt0.8]15 is studied [35][36]. This multilayer shows perpendicular magnetic anisotropy arising from the Co/Pt interfaces and forms nanometer-scale, labyrinth-like domains with
  • the increased density of pinning sites, that is, variations of the local anisotropy. Since the influence of different ion doses and pattern shapes on the formation of magnetic domains is not known a priori for different magnetic material systems, a lot of different combinations of doses and shapes
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • compared to that in free MnFe2O4 nanoparticles. This leads to an enhancement of the magnetocrystalline anisotropy constant of partially encapsulated MnFe2O4, which in turn leads to the enhancement of coercivity [20]. Geng et al. [45] fabricated Fe-filled CNT arrays with high coercivity, which is primarily
  • contributes to a large coercivity. The second factor is the large aspect ratio of the Fe-filled arrays characterized by a large shape anisotropy, which may lead to high coercivity. The saturation magnetization of MnFe2O4/MWCNTs at room temperature is 7.6 emu/g, six times lower than the expected saturation
  • due to the existence of a diamagnetic component in CNTs. In the literature, the reported value for MnFe2O4 nanoparticles of 12.5 nm in size is 55 emu/g [27]. From the above analysis it can be concluded that particle size has a major effect on the blocking temperature value. Shape, anisotropy, and
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • fabricate a uniform layer that is free from any spinning-induced structural anisotropy [40]. The PC samples were 10 × 10 mm2 square pieces cut from 1.5 mm thick wafers of an optical-grade PC polymer manufactured by microfluidic ChipShop GmbH. Thin metal films of either a Pt60Pd40 alloy or of Au were
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • -based electrokinetic (EK) microdevices to characterize ASPNPs. We found that anisotropy strongly influences electrokinetic particle behavior by comparing compositionally identical anisotropic and non-anisotropic SPNPs. Additionally, we were able to estimate the empirical electrokinetic equilibrium
  • parameter (eEEEC) for all SPNPs. This particle-dependent parameter can allow for the design of various separation and purification processes. These results show how promising the insulator-based EK microdevices are for the analysis and purification of clinically relevant SPNPs. Keywords: anisotropy
  • voltage at which SPNPs will become trapped in an insulator-based EK device. Moreover, homogeneous particles with a higher content of BSA showed lower trapping voltage values. The results also indicate that particle anisotropy plays an important role in determining the trapping voltage, as 50:50
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • significant change in droplet size. Moreover, it must be taken into account that Si(111) substrates were used for the experiments. Due to the anisotropy of silicon, the values shown here cannot be used quantitatively for other crystal orientations, since they have different surface and interfacial energies
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • electrodes (Figure 5b). The observed variation in the R(T) step-like behavior may also be due to the specific sample geometry (i.e., electrodes with horizontal and vertical orientations, Figure 4a). Due to the shape anisotropy, the “body” of the “centipede” is magnetized along the longitudinal direction
PDF
Album
Full Research Paper
Published 07 Sep 2020

Influence of the magnetic nanoparticle coating on the magnetic relaxation time

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2020, 11, 1207–1216, doi:10.3762/bjnano.11.105

Graphical Abstract
  • corresponding magnetic configuration of the system. For the numerical simulation, two widely known models have been used [19][20][21]. We started with a system of single-domain magnetic nanoparticles, consisting of spherical iron-oxide nanoparticles with uniaxial magnetic anisotropy, which have a lognormal
  • spontaneous magnetisation, kB is the Boltzmann constant, T is the temperature, α is the damping constant, and γ is the gyromagnetic ratio. In Equation 1, where Ψi is the angle between and the easy anisotropy axis of the i-th nanoparticle. θip are the solutions of the following transcendental equation: In
  • Equation 9, θi is the angle between the easy magnetisation and anisotropy axes of the i-th nanoparticle; therefore: In Equation 18 and Equation 20, is the effective magnetic anisotropy constant of the i-th nanoparticle. If hi < hic(Ψi) < 1 [21][22], then Simulation conditions and results For this study
PDF
Album
Full Research Paper
Published 12 Aug 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • , size, volume, magnetic anisotropy, concentration, and the potential to remain dispersed and not to agglomerate at the site of action [63]. Hyperthermia only works if the nanoparticles have a single magnetic domain, i.e., if they behave uniformly throughout the entire mass as a single magnet. There are
PDF
Album
Review
Published 27 Jul 2020

Excitonic and electronic transitions in Me–Sb2Se3 structures

  • Nicolae N. Syrbu,
  • Victor V. Zalamai,
  • Ivan G. Stamov and
  • Stepan I. Beril

Beilstein J. Nanotechnol. 2020, 11, 1045–1053, doi:10.3762/bjnano.11.89

Graphical Abstract
  • Mare 168, Chisinau 2004, Republic of Moldova T.G. Shevchenko State University of Pridnestrovie, 25 Oktyabrya street 107, 3300 Tiraspol, Republic of Moldova 10.3762/bjnano.11.89 Abstract The optical anisotropy of the Sb2Se3 crystals was investigated at 300 and 11 K. Excitonic features of four excitons
  • symmetry in the Brillouin zone (k = 0) for crystals with an orthorhombic symmetry (Рnma). The photoelectric properties of the Me–Sb2S3 structures were investigated in the spectral range 1–1.8 eV under E||c and E⟂c polarization conditions and at different applied voltages. Keywords: anisotropy; antimony
  • absorption, reflection and excitonic spectra were obtained. The Sb2Se3 crystalline anisotropy of the ground and excited states of four excitonic series were determined at 300 and 11 K. Due to the crystal field (Δcf) and spin–orbit (Δso) interactions, the high valence band splittings were estimated in the
PDF
Album
Full Research Paper
Published 16 Jul 2020
Other Beilstein-Institut Open Science Activities