Search results

Search for "barrier" in Full Text gives 520 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • hepatotoxicity and cause inflammatory reactions [31][40][41][42][43]. Askri et al. demonstrated the weakness of the antioxidant barrier against these iron nanoparticles [31]. When Fe3O4 NPs accumulate in lysosomes and release iron ions from their structure, this leads to the dysfunction of mitochondria
PDF
Album
Full Research Paper
Published 11 Dec 2024

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
  • of implementation, management, resources, and power. These strong constraints on infrastructures, competences, and resources constitute a significant barrier for non-specialists or non-academic institutions, for example technological SMEs. Current multiscale approaches also lack a high degree of
PDF
Album
Perspective
Published 27 Nov 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • therapeutic effects [30][31]. Poor permeability and penetration are additional obstacles. Phytochemicals may have difficulties crossing biological membranes, such as the intestinal epithelium or the blood–brain barrier, because of their molecular size, polarity, or lipophilicity. Poor permeability limits the
  • . This leads to improved bioavailability and allows for sustained release of the encapsulated therapeutic agents [64][65][66]. The advantages of PEGylated PLHNPs include enhanced biocompatibility and reduced immunogenicity. The PEG layer creates a hydrophilic barrier around the nanoparticles, which
PDF
Album
Review
Published 22 Nov 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
  • * (referred to as the nucleation barrier or the critical work of nucleus formation). It is important to note that the size of a nucleus is termed the critical size and may not necessarily coincide with the size of the entire particle denoted as d. The nucleation energy criterion states that for nucleation to
  • occur, the nucleation energy barrier must be surpassed. Referring to classic textbooks [46], one can formulate the nucleation energy criterion for phase formation as follows: If the value of ΔG* is very high (greater than approximately 50kBT), then the phase transition is suppressed. Therefore, it is
  • essential to consider nucleation and the nucleation barrier. To describe nucleation, it is necessary to consider the geometrical morphology of the transforming system and the possible transformation modes (Figure 3). In experiments, nucleation through a cap-type two-phase configuration has been observed
PDF
Album
Full Research Paper
Published 21 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • /bjnano.15.113 Abstract Central nervous system diseases negatively affect patients and society. Providing successful noninvasive treatments for these diseases is challenging because of the presence of the blood–brain barrier. While protecting the brain’s homeostasis, the barrier limits the passage of
  • small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies’ success and limitations. Keywords: antibody delivery; biopharmaceutical delivery; blood–brain barrier (BBB); CNS diseases; drug delivery; hybrid nanoparticles
  • considered a challenge because of the existence of the blood–brain barrier (BBB, Figure 1), which is composed of several cell types [7]. The BBB is a dynamic and selective interface between the systemic circulation and the brain [8]. The structure of the healthy BBB relies on the endothelial cells and the
PDF
Album
Review
Published 12 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • were calculated as 566 nm and 5.25 eV, respectively. The ideality factor and the measured barrier height (Φb) of the CDs-based Schottky diode were calculated as 9.1 and 0.364 eV, respectively. The CDs were used as semiconductor material in a Schottky diode, and the diode exhibited rectification
  • written as: where Φb is the effective barrier height, A is the device area, and A* is the Richardson constant (112 A·cm−2·K−2 for n-type Si [26]). Φb can be obtained from Equation 3. The value of n is calculated from the slope of semi-logarithmic I–V plots and is given as The ideality factor and the value
  • of the measured barrier height Φb for the synthesized CDs were 9.1 and ca. 0.364 eV, respectively. Considering the CDs-based Schottky diode, it can be said that although its rectification property is good, it exhibits a non-ideal diode behavior with a high ideality factor [27]. Conclusion In this
PDF
Album
Full Research Paper
Published 07 Nov 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • discussion, usNPs are defined as being small enough to undergo renal clearance. While this usually entails usNPs smaller than the kidney filtration barrier of 5–6 nm [26][27][28], slightly larger particles have also been found to undergo renal excretion in some cases. Ultrasmall NPs are situated at the
  • were 8–10 nm in size and exhibited efficient renal clearance, with over 90% ID found in the urine at 72 h p.i. Such a high clearance rate was unexpected considering the larger size of the construct compared to the kidney filtration barrier, and the underlying mechanism for this phenomenon requires
PDF
Album
Review
Published 30 Sep 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • delivery methods that can effectively cross the blood–brain barrier are essential for delivering therapeutic agents to the brain [40]. Nanotechnology has emerged as a promising tool in smart delivery systems. Nanoparticles can be designed to pass through biological barriers and reach specific sites in the
PDF
Album
Review
Published 22 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • pathways and the existence of a tunnel barrier between graphene flakes [43]. Accordingly, the transparency of the interface between different flakes determines whether the inter-flake transport is diffusive or hopping-type regardless of the intrinsic mechanisms responsible for intra-flake transport in
  • thickness of 12 μm. The same technique was used by Chen et al. [155] for the deposition of GO onto magnesium alloys. The authors investigated the corrosion in 0.9 wt % NaCl solution, showing beneficial effects of GO mainly due to both being a physical barrier and having a low reactivity. Similar results can
PDF
Album
Review
Published 16 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • of cells with drugs may allow drug incorporation into vesicles released by the cells. Recent studies have even suggested that incorporation of drug-containing NPs in cellular membranes might increase the ability of these particles to cross the blood–brain barrier [6]. However, regulatory challenges
PDF
Album
Perspective
Published 12 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • material and silicon-on-insulator substrates with low-doped device layers and small nanowire diameters, achieving a fully depleted mechanism and allowing better surface-to-volume ratios and higher sensitivity applications. 2.2 Two-dimensional FET-based biosensors 2.2.1 Source-engineered Schottky barrier
  • FET-based biosensors. A Schottky barrier (SE SB) FET-based biosensor, engineered with a charge plasma source, has been proposed and simulated by Hafiz et al. [93], targeting biosensing applications. Figure 10 shows the innovative structure of SE SB FET-based biosensor which utilizes a hafnium material
  • side for sensing and biomolecule detection purposes. It has been reported that ED JL TFET-based biosensors offer a simpler fabrication process, higher thermal budget, better sensitivity than classical devices, and good resistance to short-channel effects and drain-induced barrier-lowering impact
PDF
Album
Review
Published 06 Aug 2024

Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material

  • Veronika Pálos,
  • Krisztina S. Nagy,
  • Rita Pázmány,
  • Krisztina Juriga-Tóth,
  • Bálint Budavári,
  • Judit Domokos,
  • Dóra Szabó,
  • Ákos Zsembery and
  • Angela Jedlovszky-Hajdu

Beilstein J. Nanotechnol. 2024, 15, 781–796, doi:10.3762/bjnano.15.65

Graphical Abstract
  • values, which could reach up to 565.99% [63]. Antibacterial activity of salt-containing scaffolds Suppose we apply a scaffold that contains an antibacterial agent (in our case, salt) for wound dressing. It is important to note that it would not just be a mechanical barrier from the pathogens but also an
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2024

Reduced subthreshold swing in a vertical tunnel FET using a low-work-function live metal strip and a low-k material at the drain

  • Kalai Selvi Kanagarajan and
  • Dhanalakshmi Krishnan Sadhasivan

Beilstein J. Nanotechnol. 2024, 15, 713–718, doi:10.3762/bjnano.15.59

Graphical Abstract
  • device. It exhibits a stronger electric field than the other two devices because of the increased number of charge carriers. Energy band Figure 4 shows that the energy barrier is almost the same for VTFET with DLWLS and VTFET with DLWLS + spacer. The energy band diagram of the VTFET with DLWLS and spacer
  • device is shown in Figure 5 for both the on- and the off-state. Compared to the barrier width in the on-state, the distance between valence band of the source and conduction band of the channel is greater in the off-state (Vgs = Vds = 0). In the on-state, Vgs regulates electron motion. A reduction in
  • barrier width enhances electron transfer in the on-state. Leakage current in the off-state is reduced by a wide tunneling barrier. Subthreshold swing The gate dielectric material and the geometry of the transistor help in reducing the subthreshold swing. The subthreshold swing is 5 mV/dec for VTFET with
PDF
Album
Full Research Paper
Published 19 Jun 2024

AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode

  • Hendrik Müller,
  • Hartmut Stadler,
  • Teresa de los Arcos,
  • Adrian Keller and
  • Guido Grundmeier

Beilstein J. Nanotechnol. 2024, 15, 603–611, doi:10.3762/bjnano.15.51

Graphical Abstract
  • films on polypropylene substrates. Polypropylene is widely used as packaging material [11] and in other industrial applications [12][13][14]; however, it is commonly known for its poor gas barrier properties [11][13]. Therefore, silicon oxide coatings are used to improve the gas barrier properties [13
  • work was financially supported by the German Research Foundation (DFG) within the project “Functional PECVD coatings as migration barrier for the use of postconsumer recycled materials in food contact” (TRR 87 - T07 Project number 138690629).
PDF
Album
Correction
Full Research Paper
Published 24 May 2024

On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems

  • Shan He,
  • Julen Segura Abarrategi,
  • Harbil Bediaga,
  • Sonia Arrasate and
  • Humberto González-Díaz

Beilstein J. Nanotechnol. 2024, 15, 535–555, doi:10.3762/bjnano.15.47

Graphical Abstract
  • diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood–brain barrier. Therefore, the development of new neurodegenerative disease
  • inadequate solubility, limited bioavailability, and inability to effectively penetrate the blood–brain barrier (BBB) [6]. Therefore, there is an urgent need to focus on the advancement of novel neurodegenerative disease drugs (NDDs) [7][8]. The major obstacle encountered by NDDs is the selectivity of the BBB
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent

  • Horacio Emanuel Jerez,
  • Yamila Roxana Simioni,
  • Kajal Ghosal,
  • Maria Jose Morilla and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 517–534, doi:10.3762/bjnano.15.46

Graphical Abstract
  • assessed on severely inflamed HUVECs. To that aim, HUVECs were grown on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells. One lighter and one more pronounced inflammatory context was modelled by adding lipopolysaccharide (LPS) to the apical or the apical and
  • time. To this end, we used an experimental setting consisting of HUVECs growing on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells (FCs). A lighter or more pronounced inflammatory context was modeled by adding LPS to the apical or the apical and basal
  • pronounced inflammation model. There is a lack of agents able to reduce the secretion of IL-6 and IL-8 by the activated endothelium, required to treat atheromatous microenvironments; in there, besides inducing dramatic barrier alterations, IL-6 constitute mitogenic stimuli for smooth muscle cells [65][66
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2024

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • organ of the human body and acts as a great protective barrier against the entry of suspicious microbial species and foreign materials. This functional barrier is a result of the highly hydrophobic nature and compact feature of the outermost skin layer with a broad pH range from pH 4.0 to pH 7.0 [40
  • dissolves and is loaded into the blood reaching systemic circulation. Notably, the first step is the key barrier for an efficient drug delivery. In this study, the application of Franz diffusion cells, a standard procedure of transdermal in vitro testing in the USP-NF<725>, helps us to test the penetration
  • of drugs. Aqueous solution or mixed emulsion solution of DCS were not appropriate formulations for penetrating the Franz diffusion system due to their high hydrophilicity. We found a suitable hydrophobic composition to overcome this barrier. In addition, it has been reported that nanoparticles with a
PDF
Album
Full Research Paper
Published 25 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • retraction (I↑) current data, albeit with a smaller width of the hysteresis loop. The onset of deviations of I↓ from a uniform exponential increase, marked Δzc in the inset to Figure 5f, signals the collapse of the tunneling barrier and the formation of a chemical bond between the tip and the surface [32][36
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • because most drugs cannot cross the blood–brain barrier (BBB) [115][116]. Besides, the accumulation of drugs at damaged areas of the BBB can lead to an unprotected, disrupted BBB and to disturbances of the brain microenvironment. In contrast, the integrity of the BBB can decrease the accumulation of drugs
  • an effective solution because of their ability to overcome the physical and chemical barriers in the gastrointestinal tract. Such barriers are the intestinal mucosal barrier, acidic conditions in the stomach, and selectively permeable membranes of enterocytes. Moreover, natural compounds delivered by
  • , the largest organ, and the first barrier protecting our body against toxic elements, infections, and dehydration, which makes it vulnerable. A major skin injury can cause severe problems to human health such as increased risk of infections, dehydration, and immune system disorders [145][146]. Wound
PDF
Album
Review
Published 12 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • surface, it may lose its energy in the following ways. If the ion has enough energy to cross the repulsive potential energy barrier of target atoms at the surface, it will pass through the solid. A collision cascade is created within the target atoms during the slowing-down course. The impinging ion
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • strain, can be described by the following formula: When the strain ε is small, we can formulate: where X is the tunneling barrier height-dependent function. Figure 2b shows the good linearity between measured resistance and strain; the curves fit quite well to the analytical solution. When the helical
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • ]. The crystal structure of Fe3O4 nanoparticles can be tailored to allow for precise control, and these nanostructures find utility in various production processes. Magnetite nanoparticles exhibit superparamagnetic behavior due to the negligible energy barrier in the hysteresis of the particles
  • phenomenon lies in the thickness of the PDA coating. It is plausible to consider that as the PDA layer becomes thicker, it may pose a barrier to efficient heating of the Fe3O4 core. This could result in a delayed release compared to formulations with a thinner PDA layer. Moreover, it’s worth noting that a
PDF
Album
Full Research Paper
Published 28 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • . Preparation of dry samples and AFM imaging Silicon wafers were cut into ∼7 × 7 mm2 chips and were then plasma-cleaned in air using a Roplass RPS40+ plasma cleaner, which generates a thin layer of plasma by diffuse coplanar surface barrier discharge [35]. The Si surface is exposed to the thin plasma layer for
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • -center distance, and ≈30 nm pore diameter corresponded well to the expected results of using anodization in 0.3 M oxalic acid electrolyte and 40 V voltage [24][25]. PAAO is not a homogeneous material; instead, it consists of a porous layer and the barrier layer on top of the Al substrate (Figure 1b). To
  • layer, several samples were mapped via SE. Instead of a single-layer alumina with effective RI neff, the model for SE measurements (Figure 1c) consisted of a barrier layer (phase 1) and a porous alumina layer (phase 2). As can be seen in Figure 4a–e, the thickness variation of the total alumina film was
  • the differences in effective RI values and the inclusion of the barrier layer in the SE model. The obtained barrier layer thickness was constant (approximately 30 nm) for all samples (Figure 4). This is similar to values of 30–40 nm reported in other studies using the same 0.3 M oxalic acid
PDF
Album
Full Research Paper
Published 31 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • ]. The core/shell nanofiber structure can also prolong the drug release since the polymer shell plays a role as a rate-control barrier [15]. On the other hand, the nanofiber scaffolds fabricated using suitable hydrophilic or water-soluble polymers are used to improve the dissolution profile and
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024
Other Beilstein-Institut Open Science Activities