Search results

Search for "blood–brain barrier" in Full Text gives 44 result(s) in Beilstein Journal of Nanotechnology.

Frontiers in pharmaceutical nanotechnology

  • Matthias G. Wacker

Beilstein J. Nanotechnol. 2019, 10, 2538–2540, doi:10.3762/bjnano.10.244

Graphical Abstract
  • science. They have fundamentally changed our understanding of the way dosage forms can facilitate drug therapy. Prof. Jörg Kreuter has been a pioneer in this research area and dedicated his life’s work to nanoparticle research and the bloodbrain barrier [2]. One of his most outstanding discoveries, the
PDF
Editorial
Published 17 Dec 2019

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
  • MBs that incorporate IONPs are often made of polymers. For example, ultrasmall superparamagnetic iron oxide nanoparticles were embedded in the wall of poly(butyl cyanoacrylate)-based MBs, allowing the bloodbrain barrier penetration to be monitored [23]. Soft-shell colloids called lipospheres have
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • construct the nanoprobe. Both in vitro and in vivo MR and optical imaging demonstrated that the as-constructed nanoprobe was effective and sensitive for tumor targeting with desirable biosafety. Given its desirable properties such as a 100 nm diameter (capable of penetration of the bloodbrain barrier) and
PDF
Album
Full Research Paper
Published 11 Sep 2019

Enhanced inhibition of influenza virus infection by peptide–noble-metal nanoparticle conjugates

  • Zaid K. Alghrair,
  • David G. Fernig and
  • Bahram Ebrahimi

Beilstein J. Nanotechnol. 2019, 10, 1038–1047, doi:10.3762/bjnano.10.104

Graphical Abstract
  • the bloodbrain barrier. Incubation of peripheral blood mononuclear cells with citrate and mixed-matrix gold nanoparticles demonstrates that the mixed-matrix ligand shell markedly reduces the reaction of the peripheral blood mononuclear cells to the nanoparticles [48]. Therefore, whilst it remains to
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • attracted to NPs composed of hydrophobic core materials [30][31] resulting in a prolonged circulation time in blood [18]. Moreover, covalent attachment of apolipoprotein A–I and apolipoprotein E to the NP surface enables drug transport across the bloodbrain barrier [32]. Here, both proteins were identified
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • , differentiation, nor did it induce inflammation. rBCEC4 cells showed bloodbrain barrier characteristics including tight junctions. None of the nanoparticles altered the expression of tight junctions or impaired the bloodbrain barrier permeability. The findings suggest that effects of these nanoparticles on the
  • metabolic state of cells have to be further characterized before use for medical purposes. Keywords: bloodbrain barrier; laser tissue soldering; nanomedicine; nanoparticle uptake; rBCEC4 cells; Introduction Nanotechnology is commonly used in various fields, such as agriculture and pharmaceutical industry
  • and specialized structures such as the bloodbrain barrier (BBB). To be able to safely employ LTS in nanomedicine, such unwanted effects need to be studied. Previously, we investigated effects of silica (Si-), namely silica-ICG/poly(ε-caprolactone) (PCL) and silica-ICG/poly(ε-caprolactone-poly(L
PDF
Album
Full Research Paper
Published 25 Apr 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • drug-loaded liposomes for glioblastoma treatment. Glioblastoma, localized in the brain, represents one of the major challenges in drug delivery due to the necessity to pass the blood brain barrier (BBB). BBB inhibits the passage of 98% of the medicines administered through the systemic route and
PDF
Album
Review
Published 14 Jan 2019

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • glial cells (e.g., astrocytes and oligodendrocytes) exist to protect neurons and maintain homeostasis by removing material and minimizing damage to the body. However, this “protection” of the bloodbrain barrier through glial scarring also creates barriers in the exact area where axons need to regrow
PDF
Album
Review
Published 19 Mar 2018

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • , intravenous or orally administered chemotherapy drugs have very low efficacy due to challenges in reaching the brain and tumor area. The blood brain barrier (BBB) is the essential protection of the brain and only 1% of chemotherapeutic agents can pass this barrier without losing their pharmacological activity
PDF
Album
Full Research Paper
Published 12 Jul 2017

Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

  • Dong Ye,
  • Mattia Bramini,
  • Delyan R. Hristov,
  • Sha Wan,
  • Anna Salvati,
  • Christoffer Åberg and
  • Kenneth A. Dawson

Beilstein J. Nanotechnol. 2017, 8, 1396–1406, doi:10.3762/bjnano.8.141

Graphical Abstract
  • exposure routes, cellular barriers, such as the skin, the lung epithelium, the intestinal epithelium or the endothelium (including the blood-brain barrier), constitute one of the first sites of interactions of nanoparticles, whether intended as nanomedicines or not, with organisms. Thus in addressing the
  • type of barrier, namely an in vitro model of the human endothelial blood brain barrier [14][15][51][52]. Thus, the low degree of uptake observed in the Caco-2 barrier may be a characteristic of this type of barrier and could be related to the more complex polarised nature of thicker epithelial layers
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2017

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • their potential as CAs exclusively in one of the MRI modes (T1 or T2). Further requirements consisted in better biocompatibility with the targeting of tumor cells, coupling with stem cells as well as crossing the cell membrane and bloodbrain barrier. Finally, involving CNT activity in other diagnostic
  • to penetrate the blood-brain barrier, particularly as a function of their diameter [68]. Magnetic resonance imaging The visual effect of the MRI CA candidate constitutes final verification which is most important for this technique. The quantitative results are provided in Table 3. The MWCNT hybrids
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • , such as hormones. Blood is extensively circulated through those vessels and NPs in the blood may reside on the surface of vessels or go through some barriers, e.g., the bloodbrain barrier [15], blood–gas barrier [16] and blood–testis barrier [17], and reach important organs which then may get
  • ., bloodbrain barrier, blood–gas barrier and blood–testis barrier). Plain nanoconjugates and nanosized vehicles are widely utilized as drug delivery tools to cross the bloodbrain barrier [43]. Moreover, the translocation of gold nanoparticles through the air–blood barrier was found after a treatment with
  • porcine bloodbrain-barrier, both of which could contribute to the promotion of the TJ function [58]. Claudin-4 requires phosphorylation under certain concentrations of Mg2+ to proper localize to the tight junction [59] and it can be phosphorylated by protein kinase C (PKC) at Thr189 and Ser194, which
PDF
Album
Review
Published 06 May 2016

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • mice were exposed to TiO2 NPs via several administration routes (e.g., nasal instillation, subcutaneous injection and oral exposure), NPs can be absorbed and translocated into the brain mainly through the bloodbrain barrier (BBB) or the nose-to-brain pathway, which bypasses the BBB. Given that TiO2
  • , and IL-10 in the brain. Herein, an impairment of the the bloodbrain barrier and damage of astrocytes was observed [32]. Apoptosis dysfunction Apoptosis, also called programmed cell death, is defined as the genetically determined elimination of cells. The activation of caspase plays a pivotal role in
PDF
Review
Published 29 Apr 2016

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • nanocomposites could not get through the blood brain barrier. The TEM and histopathological analysis of the liver tissues suggested these nanocomposites were mainly expelled out from the mice body possibly by liver secretion. In a similar way, Guo et al. [47] reported the synthesis of hybrid nanostructures of
PDF
Album
Review
Published 24 Feb 2015

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • , drug release, VGCNFs have not yet been evaluated. Whilst they have not demonstrated the same nanoscale interactions as CNTs (such as crossing the bloodbrain barrier, which is still under investigation), they may have other applications on the larger scale and allow for higher drug storage capacity
PDF
Album
Review
Published 19 Feb 2015

Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes

  • Julia M. Tan,
  • Jhi Biau Foo,
  • Sharida Fakurazi and
  • Mohd Zobir Hussein

Beilstein J. Nanotechnol. 2015, 6, 243–253, doi:10.3762/bjnano.6.23

Graphical Abstract
  • , due to its ability to cross the bloodbrain barrier. However, responsive patients treated long term with LD therapy may experience a decrease in the duration of responsiveness to the treatment and side effects in motor fluctuation (dyskinesia) may result [13]. Moreover, once LD is administered orally
PDF
Album
Full Research Paper
Published 22 Jan 2015

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • and/or intracellular dissolution of silver nanoparticles to silver ions. Silver nanoparticles and brain cells (astrocytes) Silver nanoparticles have been reported to damage the bloodbrain barrier, to enter the brain and to cause neurotoxicity [96][97][98]. In addition, once nanoparticles have entered
  • the brain, they are not efficiently cleared from the brain, in contrast to other organs, even during a long recovery period [99]. After crossing the bloodbrain barrier into the brain, silver nanoparticles will immediately encounter astrocytes as these cells almost completely cover the brain
  • toxicity of internalized silver nanoparticles suggest that astrocytes will also cope well in the brain with silver nanoparticles that have crossed the bloodbrain barrier and further support the proposed function of astrocytes in protecting the brain against toxic metals. Genotoxicity of silver
PDF
Album
Review
Published 03 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • . Yang and colleagues [32], for example, exploited the ability of CNTs to cross the bloodbrain barrier to deliver acetylcholine into the lysosomes of neurons in the experimental treatment of Alzheimer’s disease in mice. However, the biological applications of CNTs require their complete purification
PDF
Album
Correction
Review
Published 23 Oct 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • have a potential to cross the blood brain barrier that may open new ways for drug delivery into the brain [22]. Cobalt ferrite nanoparticles coated by silica, with a size of 50 nm, were found in the brain after being administered via an intravenous injection in mice [23]. After exposure of mice to TiO2
  • -fifth of the nanoparticles deposited on the olfactory mucosa can move to the olfactory bulb of rat brain providing a portal for entry into the central nervous system circumventing the bloodbrain barrier [25]. In an in vitro model, it was shown that the ability of superparamagnetic iron oxide
  • nanoparticles to penetrate the bloodbrain barrier increased significantly in the presence of an external magnetic force. Therefore, particles can be transported through the bloodbrain barrier and taken up by astrocytes, while they do not affect the viability of the endothelial cells [26]. On the cellular
PDF
Album
Full Research Paper
Published 04 Jun 2014
Other Beilstein-Institut Open Science Activities