Search results

Search for "current" in Full Text gives 1342 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • limitations of current endosomal escape strategies, innovative approaches are urgently needed. Unraveling the mechanisms underpinning endosomal escape is pivotal for the development of novel, safe, and effective agents capable of overcoming these formidable barriers. Recent studies have highlighted the
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • and hexagonal phases were observed at higher input pulse energies. We believe these correspond to HfO2 and Hf6O, respectively. Further, in [10], we did not explore the formation of surface nanostructures on Hf after ablation. Therefore, the current study intends to understand the role of input pulse
  • potential material for sophisticated design patterning [66]. Conclusion The current study shows the successful single-step fabrication of HfO2 NPs and nanofibres in DW and HfC core–shell NPs with multilayered graphitic shells in toluene and anisole via LAL of Hf metal. The obtained NPs exhibit a broad size
PDF
Album
Full Research Paper
Published 18 Dec 2024

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • , which are activated by an externally applied voltage generating a current; these filaments have a temperature of approximately 2300 K. The second zone includes the region where the chemical reactions takes place. Here, molecular hydrogen, exposed to the high temperature of the filaments, dissociates to
PDF
Album
Full Research Paper
Published 17 Dec 2024

Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications

  • Hugo Felix Perini,
  • Beatriz Sodré Matos,
  • Carlo José Freire de Oliveira and
  • Marcos Vinicius da Silva

Beilstein J. Nanotechnol. 2024, 15, 1619–1626, doi:10.3762/bjnano.15.127

Graphical Abstract
  • employed in treating other diseases, such as Alzheimer's disease. Current medications for Alzheimer's face the challenge of the blood–brain barrier (BBB), which includes the blood–brain, cerebrospinal fluid–brain, and blood–cerebrospinal fluid barriers. These barriers exhibit high selectivity in drug
PDF
Album
Perspective
Published 16 Dec 2024

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • , three-dimensional network of polysaccharides (cellulose, pectins, and hemicelluloses) and is able to absorb large amounts of water. Depending on the water content, mucilage can behave as an efficient lubricant or as strong glue. The current work attempts to summarise the achievements in the research on
  • adhesive properties, and ecological aspects associated with these properties. We also summarise and discuss the results of our studies from the last few years conducted on mucilage envelopes and summarise them to demonstrate the current state of knowledge on this topic (Figure 2). Review Spatial structure
PDF
Album
Review
Published 13 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • environmental applications. Current research has paved the way for developing ʟ-carnosine-capped AgNPs (ʟ-car-AgNPs) enabling environmental monitoring and remediation applications. In addition, ʟ-carnosine is a natural compound widely present in the human brain and meat products. Also, it was reported that
  • bands and colors of the ʟ-car-AgNPs samples are similar to those published on CTAB-capped silver nanorods [24]. The formation of aggregated nanoparticles in the current study is probably due to the capping of ʟ-carnosine instead of CTAB. In addition, ʟ-carnosine induces a second absorption peak in the
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • cells, and in vivo models such as Danio rerio (zebrafish). Conclusion Nanotechnology has great potential in current medicinal and agricultural systems, where pests and disease vectors are controlled by chemical pesticides that are toxic to non-target species and harmful to soil fertility and ecosystems
PDF
Album
Review
Published 04 Dec 2024

Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection

  • Thi Kim Ngan Nguyen,
  • Tien Dat Doan,
  • Huy Hieu Luu,
  • Hoang Anh Nguyen,
  • Thi Thu Ha Vu,
  • Quang Hai Tran,
  • Ha Tran Nguyen,
  • Thanh Binh Dang,
  • Thi Hai Yen Pham and
  • Mai Ha Hoang

Beilstein J. Nanotechnol. 2024, 15, 1522–1535, doi:10.3762/bjnano.15.120

Graphical Abstract
  • −6 M [32]. The combination of two types of MOFs has been rarely investigated for the detection of antibiotics. To our current knowledge, no reports have been made on the use of electrodes modified with a mixture of MOFs for the detection of enrofloxacin. In this study, a sensor was developed using a
  • current of approximately 6 µA. Therefore, the optimal weight percentages of 5% CuBTC and 5% FeBTC were chosen for electrode fabrication in the subsequent experiments. Effect of supporting electrolyte on the ENR signal The electrolyte plays a crucial role in the oxidation reaction of ENR. Four electrolytes
  • @CPE electrode in a 1 µM ENR solution in PBS at different pH values (Figure 9a). The height of the ENR peak was significantly affected, as shown in Figure 9b. The ENR peak current increased significantly while the pH changed from 5 to 7 and reached the highest value at pH 7. As the pH value increased
PDF
Album
Full Research Paper
Published 28 Nov 2024

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
  • of implementation, management, resources, and power. These strong constraints on infrastructures, competences, and resources constitute a significant barrier for non-specialists or non-academic institutions, for example technological SMEs. Current multiscale approaches also lack a high degree of
  • relatively low throughput of multiscale modelling approaches in current scenarios. In recent years, however, we have begun to witness the success of AI and ML for materials development [7][13]. This is particularly evident, for example, in the application of AI-related methods for the prediction of structure
PDF
Album
Perspective
Published 27 Nov 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
PDF
Album
Review
Published 22 Nov 2024

Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model

  • Aram Shirinyan and
  • Yuriy Bilogorodskyy

Beilstein J. Nanotechnol. 2024, 15, 1453–1472, doi:10.3762/bjnano.15.117

Graphical Abstract
PDF
Album
Full Research Paper
Published 21 Nov 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • precursors that are transiently adsorbed on a substrate surface [1][2][3][4][5][6]. Charged-particle-induced deposition techniques offer control over process parameters such as particle position, energy, beam current, and flux, allowing for the formation of nanoscale patterns. Since they are direct-write
  • with higher current densities leading to more rapid deposition rates [20], creates deposits with metal contents that are typically higher than those observed in FEBID and has a wider choice of charged-particle sources [21][22][23][24][25]. One of the major disadvantages of charged-particle deposition
  • maximum precursor flux, corresponding to an increase in chamber pressure of 5.3 × 10−8 Torr. Ion beam-induced deposition of Pt(CO)2Cl2 was performed using the ion gun operating at a constant pressure of 99.999% Ar (Airgas) and an incident energy of 800 eV and target current of 5 nA. The 0.8 mm ion beam
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • systems. The research output gives a wide tuning range of 10.7 nm with 19 consecutive channels obtained with a single tuning current at room temperature, expanding to 16 nm with the help of heat sink temperature [49]. Our focus material, LN, possessing a large electromechanical coupling coefficient (Kt
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies’ success and limitations. Keywords: antibody delivery; biopharmaceutical delivery; blood–brain barrier (BBB); CNS diseases; drug delivery; hybrid nanoparticles
  • developments in N2B delivery and discuss the structure of the nasal anatomy and the principles of intranasal administration, the principles of the DDSs for N2B delivery, and the N2B delivery of biopharmaceuticals. To provide a current overview on the studies conducted in this field, we focus on work published
  • highlights the possibility of even more advanced and combined benefits of using NPs for intranasal drug delivery. It should also be noted that there has been a shift in the type of drug molecules studied for N2B delivery. The current research applies advanced therapeutics such as mAbs and RNA for efficient
PDF
Album
Review
Published 12 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • nanostructures [23][35][36]. Our current work uses this simple method to grow ZnO nanostructures. After fabrication, the crystal quality of nanostructures is assessed through Raman scattering (RS) and photoluminescent (PL) measurements at room temperature. Experimental As mentioned above, CVD was utilized to
PDF
Album
Full Research Paper
Published 11 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • steady-state fluorescence measurements. In the second part of the study, CDs were dripped onto silicon substrates, and a CDs thin film was formed by evaporation. A diode structure was obtained by evaporating gold with the shadow mask technique on the CDs film, and the current–voltage characteristics of
  • behavior. The results obtained from this study showed that CDs can be applied in the field of electronics, apart from sensor studies, which are common application areas. Keywords: carbon dot (CD) structures; green synthesis; Rheum Ribes plant; Schottky diode; Introduction One of the most current types of
  • electrical current. There are many types of diodes, such as Zener diodes, crystal diodes, and Schottky diodes, and each type has different features and is used for different purposes. Schottky diodes contain a metal–semiconductor junction. This structure differs from other diodes because of its high
PDF
Album
Full Research Paper
Published 07 Nov 2024

Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2

  • Guixian Liu,
  • Yufan Wang,
  • Zhoujuan Xu,
  • Zhouxiaosong Zeng,
  • Lanyu Huang,
  • Cuihuan Ge and
  • Xiao Wang

Beilstein J. Nanotechnol. 2024, 15, 1362–1368, doi:10.3762/bjnano.15.109

Graphical Abstract
  • and the scanning photocurrent map under zero bias, we reveal a non-zero short-circuit current in the graphene/3R WSe2/graphene heterojunction region, demonstrating the bulk photovoltaic effect. Furthermore, the out-of-plane polarization enables the 3R WSe2 heterojunction region to achieve an ultrafast
  • inversion symmetry by second harmonic generation (SHG) measurements. The broken symmetry in 3R WSe2 leads to the BPVE. To confirm the BPVE, a vertical heterojunction of graphene-wrapped bilayer 3R WSe2 was fabricated. The non-zero short-circuit current was observed in the output characteristics and the
  • under zero bias, known as BPVE [33][39]. Under 520 nm laser excitation, a short-circuit current of approximately 21.5 nA was observed in the output characteristic curve of the vertical heterojunction device (Figure 1d), proving the existence of spontaneous OOP polarization. To compare to the graphene
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2024

Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters

  • Victoria Y. Safonova,
  • Anna V. Gordeeva,
  • Anton V. Blagodatkin,
  • Dmitry A. Pimanov,
  • Anton A. Yablokov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2024, 15, 1353–1361, doi:10.3762/bjnano.15.108

Graphical Abstract
  • based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δE of the TES prototypes, showing that it
  • of the bulk resistivity at room temperature of 3.3 × 10−7 Ω·m [11]. The variation of calculated resistivity between bridges of different sizes is likely not due to physically different film properties, but rather due to rough estimations not taking into account the edge effects for the current flow
  • critical temperature of sample A3 compared to the others is due to the lower measurement current. The resistance peak on the R(T) dependence for samples A1 and A2 (Figure 3a and Figure 3b) may appear due to non-equilibrium effects and the presence of NS borders in the setup [16][17]. But presently, we have
PDF
Album
Full Research Paper
Published 06 Nov 2024

Hymenoptera and biomimetic surfaces: insights and innovations

  • Vinicius Marques Lopez,
  • Carlo Polidori and
  • Rhainer Guillermo Ferreira

Beilstein J. Nanotechnol. 2024, 15, 1333–1352, doi:10.3762/bjnano.15.107

Graphical Abstract
  • surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative
  • boundaries of current engineering. Honeybees must visit approximately 3000 flowers to produce a single gram of honey [74]. To accomplish this, they use their hairy tongues to dip into viscous nectar at high frequencies. Their mouthparts consist of a pair of galeae, labial palps, and a hairy glossa with a
PDF
Album
Review
Published 05 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • CTAB-capped gold and silver nanoparticles without linker/buffer for catalysis and detection heavy metals is a current need. In this work, we have developed a linker-free nanosensor with CTAB as capping agent on both isotropic and anisotropic gold and silver nanoparticles. The CTAB-capped metal
  • strong reducing agent (such as NaBH4) in the presence of a catalytic agent (i.e., the nanoparticles) [27]. In the current study, we also examined the catalytic properties of CTAB-capped nanoparticles in the degradation of 4-nitrophenol (Figure 1d). The catalytic properties of CTAB-capped nanoparticles
  • different metals. Thus, it was confirmed that the size of the nanoparticles is a critical parameter influencing the physical and chemical properties of gold nanoparticles. The current study also evaluated size-dependent metal sensing using longer gold nanorods with the help of NaOH. Upon the addition of a
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  • previous studies, the authors demonstrated that Mn-doped ZnO films exhibit superior optical and piezoelectric properties compared to undoped ZnO, with a more compact microstructure and reduced surface roughness [41]. Building on this foundation, the current article aims to focus on the methods of
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • cause leakage, that is, parasitic current flow through the insulating layer. Eliminating the halo effect is virtually impossible; however, the size of the halo can be measured, and its negative effects can be eliminated by proper spacing between conducting FEBID deposits [22]. Another approach is to
  • the gallium FIB to mill a 200 nm wide slit (Figure 2c). As a side-effect, gallium was implanted along the edge of the RoI slit, so to prevent the leakage current; additional openings were formed using the DRIE process to create a non-conductive edge of the slit (Figure 3b). Mechanical characterization
  • of opMEMS bridges As mentioned in [36], MEMS are well suited for electrothermal actuation. The actuation process is driven by the Joule heat from a current flowing through the actuation lines of an opMEMS bridge, which causes a change in temperature and, in turn, a displacement resulting from a
PDF
Album
Full Research Paper
Published 23 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • applications. Conflicts of Interest The authors declare that they have no conflicts of interest. Schematic workflow illustration of the current study. UV–vis spectra of AuNPs@GluN/Alg measured under varying reaction conditions (left) and plots of absorbance as function of various synthesis parameters (right
PDF
Album
Full Research Paper
Published 04 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • modalities of actively targeted usNPs and their current applications in cancer diagnosis and treatment. 2 Inorganic ultrasmall NPs in cancer nanomedicine Important classes of inorganic usNPs under investigation for cancer nanomedicine include metallic usNPs (gold, silver), oxide and sulfide usNPs (silica
PDF
Album
Review
Published 30 Sep 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • not a large number of recent papers published looking at the underlying physics in the field of focused ion beams. A broader look at current literature on heat transfer induced by particle beams highlights that heat damage is not only problematic for FIB processing, but also presents challenges for
  • lower ion beam currents [16][17] and by reducing the beam overlap as well as blurring the beam [17]. The drawback of this approach, however, is increased processing times due to the small current (picoampere range). Other approaches that were successfully used to avoid or reduce heat damage include
  • and a cross section through the middle of the ion beam spot for a simulated sample volume of 600 nm × 600 nm × 400 nm after an irradiation time of 990.0 ns is shown in Figure 3. The simulations for 5 keV in the nanoampere beam current range (Figure 3A) and picoampere beam current range (Figure 3B
PDF
Album
Full Research Paper
Published 27 Sep 2024
Other Beilstein-Institut Open Science Activities