Search results

Search for "dynamics" in Full Text gives 541 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Influence of laser beam profile on morphology and optical properties of silicon nanoparticles formed by laser ablation in liquid

  • Natalie Tarasenka,
  • Vladislav Kornev,
  • Alena Nevar and
  • Nikolai Tarasenko

Beilstein J. Nanotechnol. 2025, 16, 1533–1544, doi:10.3762/bjnano.16.108

Graphical Abstract
  • shape, as well as parameters and dynamics of NP formation processes. The structure of the Bessel beam implies that plasma formation would occur as a result of the central lobe interacting with the target, while the concentric rings, which have the laser energy distributed over a larger area may act as
  • shockwave dynamics also have an impact on the CBs’ size, pressure, and oscillations which are the parameters influencing the morphology and structure of the forming NPs. The characteristic structure of a Bessel beam also impacts the plasma shape and induces pressure and temperature gradients. This influence
  • explained the formation of elongated pillar-shaped nanostructures on the target surface. For ablation in a liquid, the interaction of non-Gaussian beam field patterns with a target will further impact the ablation processes. The dynamics and conditions in CBs are also affected by the laser beam shape and
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • ]. Figure 10a shows a photograph of a typical spin-coating setup, along with high-speed images capturing the dynamics of and film formation on a rotating substrate. Mono and bi-metallic Pt, Pd, and Pt80Pd20 NPs were synthesized using a Nd:YAG laser operating at λ = 1064 nm, a fluence of 5 J/cm2, and a
PDF
Album
Review
Published 27 Aug 2025

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts

  • Tuan Minh Truong Dang,
  • Thao Thu Thi Huynh,
  • Guo-Ping Chang-Chien and
  • Ha Manh Bui

Beilstein J. Nanotechnol. 2025, 16, 1401–1416, doi:10.3762/bjnano.16.102

Graphical Abstract
  • , bibliometric tools support informed policy making and research prioritization. The application of bibliometric analysis enables an accessible and comprehensive visualization of research dynamics and development trends in BC-based MP remediation. Additionally, using authoritative journal databases such as
  • microbial community dynamics, particularly in agricultural systems. Plastic mulch: Keywords such as “microbial community” and “water” reflect studies (2020–2022) focusing on MPs derived from agricultural plastic mulch and their effects on microbial ecosystems and runoff. The research focus has since
  • modulating plant gene expression and ARG dynamics in the soil. Ultimately, these effects foster a healthier and more resilient soil ecosystem under MP contamination. Water treatment MP removal from aqueous media by BC adsorption A summary of research on MP removal is provided in Table S2, Supporting
PDF
Album
Supp Info
Review
Published 21 Aug 2025

Deep-learning recognition and tracking of individual nanotubes in low-contrast microscopy videos

  • Vladimir Pimonov,
  • Said Tahir and
  • Vincent Jourdain

Beilstein J. Nanotechnol. 2025, 16, 1316–1324, doi:10.3762/bjnano.16.96

Graphical Abstract
  • mechanistic model of CNT growth, in which the structure and dynamics of the CNT edge at the catalyst interface govern transitions between kinetic regimes [32]. The versatility of the proposed method extends beyond the specific imaging modality used in this study. Its robustness makes it applicable to other in
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2025

Mechanical stability of individual bacterial cells under different osmotic pressure conditions: a nanoindentation study of Pseudomonas aeruginosa

  • Lizeth García-Torres,
  • Idania De Alba Montero,
  • Eleazar Samuel Kolosovas-Machuca,
  • Facundo Ruiz,
  • Sumati Bhatia,
  • Jose Luis Cuellar Camacho and
  • Jaime Ruiz-García

Beilstein J. Nanotechnol. 2025, 16, 1171–1183, doi:10.3762/bjnano.16.86

Graphical Abstract
  • membrane tension and rigidity are two intertwined physical parameters with a dynamic behavior dictated by the internal turgor pressure of the bacteria during swelling or plasmolysis. Therefore, understanding the dynamics of their mechanical response due to changes in external conditions or exposure to
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • transitions can be well modeled by classical approaches down to the nanometer scale in a local thermodynamic equilibrium [32][33][34]. A synthesis of the different coevolving phenomena with excitation and dissipation requires more detailed numerical approaches [35] or simulations. Molecular dynamics (MD
  • -particle imaging” describes the processes initiated by laser-excitation of an individual NP probed by X-ray scattering up to delay times of a few tens of picoseconds. The second chapter “Structural dynamics in liquids” reports on the application of ultrafast time-resolved electron scattering to investigate
  • early-time structural relaxation and chemical bond dynamics in laser-induced ionization of liquid water. In the third chapter “Nanoparticle excitation in an ensemble and energy exchange with medium”, an approach is shown on how reactions of both the excited NPs as well as the interaction with the
PDF
Album
Review
Published 02 Jul 2025

Shape, membrane morphology, and morphodynamic response of metabolically active human mitochondria revealed by scanning ion conductance microscopy

  • Eric Lieberwirth,
  • Anja Schaeper,
  • Regina Lange,
  • Ingo Barke,
  • Simone Baltrusch and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2025, 16, 951–967, doi:10.3762/bjnano.16.73

Graphical Abstract
  • , Rostock University Medical Center, 18057 Rostock, Germany 10.3762/bjnano.16.73 Abstract Mitochondrial network dynamics play a key role in enabling cells to adapt to environmental changes. Fusion and fission of mitochondria, as well as their contact with other organelles, are central processes
  • this work, we employ SICM to investigate the shape, dynamics, and nanomorphology of metabolically active, isolated mitochondria, with a specific focus on the outer mitochondrial membrane. Furthermore, we identify and characterise two distinct dynamic effects observed in time-dependent topography data
  • . One of these effects appears to be associated to the dynamics of the mitochondria’s morphology (in the following referred to as morphodynamics, cf. [6]) and their contact with the measurement environment. Finally, we propose hypotheses to explain the observed effects. Results Viability of the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jun 2025

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • sp3 hybridization is a metastable material. A significant activation barrier hampers its relaxation into sp2 graphitic carbon, and this transformation occurs during vacuum heating in the temperature range of 1500–1800 °C [9]. According to molecular dynamics simulations, graphitization of nonterminated
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • , defects, and interstitials are induced through the interaction between energetic ions and the host material, resulting in structural modification and thus alteration in lattice dynamics of the host material [10]. The implantation-induced disorder can be qualitatively examined using Raman spectroscopy
  • , which is a well-established and non-destructive method to determine crystal structure, lattice defects, and dynamics. Since ZnO is a polar semiconductor, the phonon–electron interaction produces longitudinal optical (LO) phonon modes, whose long-range behavior considerably affects the efficacy of
PDF
Album
Full Research Paper
Published 11 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • Katoch et al. investigated the dynamics of photoexcited electron and hole polarons in a cerium oxide single crystal and in a nanocrystal using FEL-based pump–probe XANES at the Ce M5 and O K edges detected in total electron yield mode [61]. The samples contained a non-negligible concentration of Ce3
  • on samples with different defectivity and using techniques with different probing depths suggest that defects can act as polaron trapping and recombination sites and that the excited charge dynamics can be different on the surface and in the bulk of the investigated oxide. The chemical sensitivity of
  • written in the framework of the Italian Ministry of Foreign Affairs and International Cooperation (MAECI) funded project “Ultrafast Dynamics in Materials for Energy Conversion (U-DYNAMEC)” under the program 2023 Italy – Germany Science and Technology Cooperation. Funding Financial support from the Italian
PDF
Album
Review
Published 10 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • ). This difference can be attributed to variations in alloy composition and material properties, which influence the ablation plume dynamics and particle formation kinetics during PLAL. Specifically, the thermal properties, such as melting point and heat conductivity, and the volatility of the alloy
  • synthesized via PLAL, where separate Mn-rich clusters formed due to elemental evaporation during synthesis. Additionally, the ionization potential influences the ablation plume dynamics. Notably, the Ge variation from the expected composition is lower than for Mn, contrasting with the bulk alloy’s surface
  • of differences in particle formation dynamics or the protective role of other alloying elements. Structural characterization of the CCA NPs Figure 5a and Figure 5b show HRTEM bright-field images of the Ge-based CCA NPs and Al-based CCA NPs. The insets reveal the crystallographic structure of the NPs
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • deoxyribonucleic acid (DNA) [1]. Water molecules and their hydrogen bonding network function as lubricants for biomolecular dynamics. Recent scientific works have analyzed the important role of hydration shells on DNA, proteins, and phospholipid membranes [2][3][4]. The first hydration shell (about 3.5 Å) at the
  • interface of biomolecules has considerably slower dynamics than water molecules in the bulk. Besides, the first water layer on the interface is responsible for hydration forces between biomolecular structures [5]. The rearrangement of water molecules through hydrogen bonding on hydrated surfaces generates
  • attraction. In the molecular dynamics simulations by Hasheminejad et al., the interfacial interaction energy between graphene oxide nanosheet and polylactide matrix is assigned to van der Waals forces and hydrogen bonds [62]. The bonding network of GO-SG-ZH nanosheets in the coating is another reason for the
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • nanoparticle synthesis by PLAL. For instance, it has been reported that the density and viscosity of the surrounding liquid influence the expansion of the plasma plume. The expansion dynamics of the plume differ due to the larger opposing force induced by the increased viscosity of the solvent, which in turn
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • dynamics and superconducting characteristics of the films. X-ray diffraction (XRD) analysis revealed that the TaN thin films exhibited excellent crystallinity, with sharp diffraction peaks indicating well-defined structural phases. The deposition process was optimized by systematically adjusting substrate
PDF
Album
Full Research Paper
Published 22 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • understanding of material properties, particularly at the nanoscale, where phenomena such as quantum confinement, interface effects, and defect dynamics play a critical role. Innovations in characterization techniques have enabled researchers to explore these properties with unprecedented precision, paving the
  • variations influence key properties such as charge transport, polarization dynamics, and defect distributions, directly impacting the performance of microelectronic and energy systems [14][15]. Understanding these effects requires correlating nanoscale dielectric properties with structural and morphological
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • , particularly those associated with NDs like AD. Research has demonstrated the ability of fullerenes to prevent the aggregation of Aβ peptides. For instance, molecular dynamics simulations have shown that fullerenes inhibit the fibrillation of the hydrophobic KLVFFAE peptide by disrupting the formation of β
  • , thereby mitigating their neurotoxic effects [62][72]. In addition to their inhibitory capabilities, SWCNTs can serve as effective sensors for AβOs. Their ability to interfere with β-sheet formation, a hallmark of Aβ aggregation, has been confirmed through comprehensive molecular dynamics simulations
  • modalities, including hydrophobic and hydrogen bonding, leading to substantial inhibition of peptide aggregation [79]. In another innovative approach, Javed et al. evaluated the inhibitory potential of casein-coated AuNPs against oligomers through molecular dynamics simulations. Their findings demonstrated
PDF
Album
Review
Published 22 Apr 2025

Water in nanoporous hexagonal boron nitride nanosheets: a first-principles study

  • Juliana A. Gonçalves,
  • Ronaldo J. C. Batista and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2025, 16, 510–519, doi:10.3762/bjnano.16.39

Graphical Abstract
  • desalination technology [4][5][6]. Computational methods have been employed to enhance the understanding of nanoscale desalination processes. In this context, the use of molecular dynamics and ab initio calculations allows for the study of the physics involved in nanostructured membrane materials designed to
  • as a molecular sieve [22][23][24][25]. Theoretical studies using molecular dynamics simulations analyzed the impact of the partial charge on the h-BN membrane surface on water molecules and salt ion transport [26]. They noted that the Coulomb interaction between water molecules/ions and the channels
  • increase ranges from 0.586 to 1.236 eV, depending on the environment. Thus, the dynamics of pore formation for pores with B–H-terminated edges are expected to differ from those of N–H-terminated pores. Specifically, an additional B–H/B–OH group should migrate to the 60° vertices of pores to improve
PDF
Album
Full Research Paper
Published 11 Apr 2025

Impact of adsorbate–substrate interaction on nanostructured thin films growth during low-pressure condensation

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2025, 16, 473–483, doi:10.3762/bjnano.16.36

Graphical Abstract
  • patterns is understanding how adsorbate–substrate interactions influence the growth dynamics of these films [23][24][25]. Mathematical and numerical modeling of the growth processes of nanostructured thin films enables detailed analysis of the dynamics involved. It allows for investigating the impact of
  • [35]. We discuss effects of adsorbate–substrate interactions in dynamics of adsorbate structures formation and their statistical properties. It will be shown, that an increase in the strength of adsorbate–substrate interactions can induce adsorbate patterning on the first growing layer and lead to
  • interactions in a homogeneous system. Next, we perform stability analysis and define a range of the strength of adsorbate–substrate interaction responsible for pattern formation during deposition. Finally, we present results of numerical simulations and discuss dynamics of surface patterns formation and
PDF
Album
Full Research Paper
Published 28 Mar 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • plumes induced by donut-shaped pulses [44] predicted unusual plume expansion dynamics with the formation of multiple internal shock waves, which strongly increase plume density and temperature. It can be expected that donut-shaped laser pulses can also offer new possibilities for NP production via PLAL
  • by affecting plume geometry and dynamics. Thus, the NP formation mechanism and the resulting size distribution are modified compared to a Gaussian beam. However, as far as we know, donut-shaped laser pulses have not yet been investigated under PLAL conditions. In this study, PLAL with donut-shaped
  • medicine for gold [9][29], strengthened ceramics and steels for high-temperature applications for Y2O3 [45][46][47], and catalysis and energy storage for HEAs [48][49]. The produced NPs are compared with those obtained with Gaussian beams. The evolution of the PLAL-generated cavitation bubble dynamics was
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Vortex lattices of layered HTSCs at different vortex–vortex interaction potentials

  • Valerii P. Lenkov,
  • Anastasia N. Maksimova,
  • Anna N. Moroz and
  • Vladimir A. Kashurnikov

Beilstein J. Nanotechnol. 2025, 16, 362–370, doi:10.3762/bjnano.16.27

Graphical Abstract
  • molecular dynamics simulation of a vortex system in a superconductor with was performed, and a phase B–T diagram was obtained (B is the magnetic field and T is the temperature of the vortex system), which contains regions of a hexagonal vortex lattice, a striped structure, and a lattice of vortex clusters
PDF
Album
Full Research Paper
Published 13 Mar 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Advanced atomic force microscopy techniques V

  • Philipp Rahe,
  • Ilko Bald,
  • Nadine Hauptmann,
  • Regina Hoffmann-Vogel,
  • Harry Mönig and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 54–56, doi:10.3762/bjnano.16.6

Graphical Abstract
  • mechanical oscillation of the piezoelectric membrane with highest resolution in real time. In addition to the measurement of surface potentials or photovoltages, Navarro-Rodriguez et al. investigate the dynamics of surface charges and how they couple to the detection system [9]. They describe in detail how
PDF
Editorial
Published 21 Jan 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • Fowlkes and Rack [6] where a value of 0.025 was reported for W(CO)6. In this work, a stationary pulsed beam was used to study the adsorption/desorption dynamics. A fit of the results to the continuum model was performed with an estimated value for the energy-integrated dissociation cross section in order
  • transitional behavior was found when going from about 100 K to 1000 K. At 100 K the sticking coefficient was found to be close to unity and it dropped to near zero closer to 1000 K. All the aforementioned works report precursor-mediated adsorption dynamics, whereby molecules transiently adsorb after surface
  • pumping speed, and gas injection system (GIS) geometry using the GIS nozzle gas dynamics simulation approach described in [22]. The tilt of the GIS in relation to the substrate surface that defines the angle at which molecules hit the surface was 13° for Cr(C6H6)2 and 50° for Me3CpPtMe. Both GIS needles
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Bioinspired nanofilament coatings for scale reduction on steel

  • Siad Dahir Ali,
  • Mette Heidemann Rasmussen,
  • Jacopo Catalano,
  • Christian Husum Frederiksen and
  • Tobias Weidner

Beilstein J. Nanotechnol. 2025, 16, 25–34, doi:10.3762/bjnano.16.3

Graphical Abstract
  • . This reduction is attributed to altered flow dynamics near the super-hydrophobic surface, inhibiting nucleation and growth of scale. Our findings highlight the potential of bioinspired SNF coatings to enhance the performance and longevity of steel surfaces in industrial environments. Keywords
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • measuring the colocalization of labeled liposomes with lysosomal markers, quantified using Pearson’s correlation coefficient. Lipid mixing assays assessed the potential fusogenic effect, and molecular dynamics (MD) simulations explored the interactions of protonated sodium oleate (SO) with the endosomal
  • mechanism, facilitating cytosolic delivery with reduced cytotoxicity. This approach offers a safer and more effective option for targeted drug delivery applications. Keywords: Aurein 1.2; endosomal escape; fusogenic effect; molecular dynamics simulation; sodium oleate; Introduction The quest for efficient
  • complexes with liposomal components, enhancing both liposome stability and drug encapsulation. To gain deeper insight into the mechanisms underpinning SO’s potential as an endosomal escape agent, molecular dynamics (MD) simulations have emerged as an indispensable computational tool. These simulations
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024
Other Beilstein-Institut Open Science Activities