Search results

Search for "electron dose" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • , which reduces the intensity of the beam [10][11][12]. This again is of benefit for imaging soft matter materials because a lower electron dose means less damage to the material. More importantly, it improves the energy resolution for spectroscopic studies, which is another major step in the increase of
PDF
Album
Review
Published 16 Jul 2015

Patterning technique for gold nanoparticles on substrates using a focused electron beam

  • Takahiro Noriki,
  • Shogo Abe,
  • Kotaro Kajikawa and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2015, 6, 1010–1015, doi:10.3762/bjnano.6.104

Graphical Abstract
  • patterns, the electron dose was about 0.07 nC/μm2. This process immobilized the irradiated particles on the substrate by changing the structure of the organic molecules that surrounded the irradiated particles. The detailed mechanism of this step was discussed above. Step (iii): removal of unfixed
PDF
Album
Full Research Paper
Published 22 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • carbon content versus electron dose. Interestingly cross-sectional TEM studies revealed that the process occurred bottom-up where the purification rate is fastest at the end of the electron-beam range in the PtCx deposit and eventually propagates to the surface. Our previous electron-stimulated
PDF
Album
Full Research Paper
Published 08 Apr 2015

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • contaminants in the deposit [21]. Based on the irradiation of cold (105 K) Co(CO)3NO films of about 2.5 nm thickness on amorphous carbon and Au substrates with 500 eV electrons under UHV conditions, the following decomposition mechanism was proposed [22]: At a low electron dose (<5 × 1016 e−/cm2), one or two
  • File 1 for details). In Figure 2 the electron dose increases from left to right, and the size from top to bottom. The structures were written sequentially, left-to-right and row-by-row in one experimental run: The EBID process lasted 32 min, and thereafter, the precursor pressure was maintained to
  • , a dose of 0.5 C/cm2 marks the start of observable proximity effects in the form of fringes around the structures. Closer inspection of the structures shows that, despite the same electron dose was applied per surface area, larger squares are brighter and more defined compared to the smaller ones
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst

  • Hongwang Wang,
  • Jim Hodgson,
  • Tej B. Shrestha,
  • Prem S. Thapa,
  • David Moore,
  • Xiaorong Wu,
  • Myles Ikenberry,
  • Deryl L. Troyer,
  • Donghai Wang,
  • Keith L. Hohn and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2014, 5, 760–769, doi:10.3762/bjnano.5.88

Graphical Abstract
  • morphology were examined by bright-field and dark-field transmission electron microscopy (TEM) using an FEI Technai G2 transmission electron microscope at an electron acceleration voltage of 200 kV. High resolution images were captured using a standardized, normative electron dose and a constant defocus
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2014

In situ growth optimization in focused electron-beam induced deposition

  • Paul M. Weirich,
  • Marcel Winhold,
  • Christian H. Schwalb and
  • Michael Huth

Beilstein J. Nanotechnol. 2013, 4, 919–926, doi:10.3762/bjnano.4.103

Graphical Abstract
  • , can be a difficult task. This can be exemplified for the commonly used precursor W(CO)6. Rosenberg and co-workers recently studied the electron-dose and substrate-temperature dependence on the final deposit in electron-induced dissociation experiments with 500 eV electron energy for this precursor [14
  • desorption, which results in an average composition of the deposit of [W]/[C] ≈ 1/4. By increasing the electron dose and/or the substrate temperature, which causes changes in the coverage and average residence time of the precursor molecules on the surface, the metal content can be increased to above 40 atom
  • Pt–C test-structures were fabricated via FEBID by using identical depostion parameters (U = 5 kV, I = 1.6 nA, tD = 1 μs, px = 40 nm, py = 40 nm) and an electron dose of 30 nC/μm2. This results in a height of the deposits of approximately 120 nm, which ensures a complete penetration of the deposit by
PDF
Album
Full Research Paper
Published 17 Dec 2013

Guided immobilisation of single gold nanoparticles by chemical electron beam lithography

  • Patrick A. Schaal and
  • Ulrich Simon

Beilstein J. Nanotechnol. 2013, 4, 336–344, doi:10.3762/bjnano.4.39

Graphical Abstract
  • spacing of the individual rings is Lr = 30 ± 8 nm (cf. histogram of all measured spacings Lr in Figure 6c) and is, hence, originated by the initial grating spacing S. Since the actual diameter of the used Gaussian electron beam is much smaller (approx. 1 nm) than the grating distance, the electron dose
  • applied to the SAM decreases with increasing distance from the grating spots (being lowest in the middle between two spots). The variation of the electron dose within the irradiated structure results in a variation of the thiol density. With decreasing particle size this thiol gradient becomes the driving
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • times of 50 ns, 100 ns, 500 ns, 1 μs and 100 μs are applied for further comparison. Although the same electron dose is applied for each deposition, which means the same deposition time (2 s) as well as the same beam current is maintained (0.2 nA), the deposited nanoclusters demonstrate a different
  • has been quantified as shown in Figure 7f. The average diameter of Pt nanoclusters are measured and plotted against electron dose, which shows a linear increase in the range of 0 to 3.2 × 106 electrons/Å2. A recent study has shown that FEBID of amorphous carbon on CNT followed by annealing of the
  • of nanoparticles, which can be difficult to monitor and control. Our post-growth experiment through electron irradiation has shown that the crystallization of amorphous carbon can be performed in a controllable manner, where the growth of nanoparticles is seen to increase along with the electron dose
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Controlled positioning of nanoparticles on a micrometer scale

  • Fabian Enderle,
  • Oliver Dubbers,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 773–777, doi:10.3762/bjnano.3.86

Graphical Abstract
  • optimum electron dose is determined, and the resist is thus developed (developer: 140–160 s, AR300-47 with water as stopper) followed by a postbake (80 s at 120 °C on a hot plate) of the exposed disks. The situation after this resist-removal step is illustrated by the SEM image shown in Figure 3. The four
PDF
Album
Full Research Paper
Published 20 Nov 2012

Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

  • Zhe She,
  • Andrea DiFalco,
  • Georg Hähner and
  • Manfred Buck

Beilstein J. Nanotechnol. 2012, 3, 101–113, doi:10.3762/bjnano.3.11

Graphical Abstract
  • ) SEM images of Cu deposition on e-beam-patterned SAMs. Lines indicated by arrows were written with an electron dose of 800 mC/cm2 in both cases. Deposition was carried out in (c) at −0.5 V for 15 s, and in (d) at −0.7 V for 1 s and at −0.35 V for 10 s. SEM images of Cu nucleation and growth on a MBP0
PDF
Album
Full Research Paper
Published 06 Feb 2012

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

  • Xianghui Zhang,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2011, 2, 826–833, doi:10.3762/bjnano.2.92

Graphical Abstract
  • higher doses, up to 80 mC·cm−2 (cf. Figure 3b). This behavior is in accordance with an earlier study on the thermal stability of CNMs, which indicated almost complete cross-linking at an electron dose of ~45 mC·cm−2 [20]. Fully cross-linked BPT and NBPT CNMs that were made on a gold substrate had a
  • %. There was no obvious dependence on the electron dose, cf. Table 1. For CNMs, the stress is likely to be introduced during the cross-linking, as new covalent bonds are created. Obviously, the strain release is precluded due to the adhesion of the CNMs to the substrate or the polymeric transfer medium
  • . Conclusion Freestanding CNMs with 1 nm thickness were prepared from cross-linked biphenyl-based self-assembled monolayers. We employed bulge testing in order to obtain the mechanical properties of these CNMs. The preparation of fully cross-linked CNMs requires an electron dose of at least 50 mC·cm−2
PDF
Album
Video
Full Research Paper
Published 20 Dec 2011
Other Beilstein-Institut Open Science Activities