Search results

Search for "feedback" in Full Text gives 215 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • efficiency. This concept is based on negative electrothermal feedback for an incoming signal, which is due to the direct electron cooling of the absorber by the normal metal–insulator–superconductor (NIS) tunnel junctions. Recently, in receivers with cold-electron bolometers [4][5][6], electron cooling from
PDF
Album
Full Research Paper
Published 07 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • “Ph2”) and from C60 (“a”–“e”) are labeled and their evolution is indicated with dotted lines. Scanning tunneling spectrum acquired at constant tip–surface separation (open feedback loop) on the C60/ZnTPP/Fe(001)–p(1 × 1)O system (black) and on the ZnTPP/Fe(001)–p(1 × 1)O surface (red). The black curves
PDF
Album
Full Research Paper
Published 30 Aug 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • plotted for both forward and backward directions as presented in Figure 3. There, the normal force plots show the normal force signal as controlled by the feedback loop in red color, while the normal force traces in blue and orange colors were calculated from the height traces in, respectively, the
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • frequency. The AFM measurement was carried out in tapping mode. A 633 nm laser light aimed at the back side of the cantilever tip was reflected toward a position-sensitive photodetector, which provides feedback signals to piezoelectric scanners that maintain the cantilever tip at constant height (force
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • tandem lock-in amplifiers, tandem SPV-KPFM [24], which can measure only slow SPV responses on the subsecond time scale because it uses closed-loop DC bias feedback on the millisecond-to-second time scale. Sugawara et al. used two parallel lock-in amplifiers, parallel SPV-KPFM [25], which also detects
  • energy resolutions and the image acquisition time of AC-KPFM in the AM mode are comparable to those of the classical KPFM in the AM mode, because both methods detect the electrostatic force, and the response time of the bias feedback τ limits the image acquisition time. To reach sufficient sensitivity
  • classical KPFM. The spatial and energy resolutions and the image acquisition time of AC-KPFM in the FM mode are comparable to those of the classical KPFM in the FM mode, because both methods detect the electrostatic force gradient and the response time of the bias feedback τ limits their image acquisition
PDF
Album
Full Research Paper
Published 25 Jul 2022

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • resonant frequency (usually 40–400 kHz). As the distance between the probe and the sample decreases, the oscillation amplitude A also decreases. A certain amplitude value is selected as a set point Asp (a reference level). A feedback loop compares the current amplitude value with Asp and, moving the Z
  • common feature is amplitude feedback. An alternative method uses the resonant frequency of the probe as a feedback parameter and is called frequency modulation AFM (FM-AFM). Selection of scan parameters in amplitude modulation AFM Let us consider which parameters we need to adjust in AM-AFM and what
  • . If there is a vertical wall of height h, then, at the moment when the probe quickly hits the wall, the oscillation amplitude decreases by the amount of h. The error signal δA = A − Asp appears, defined by the difference of the current amplitude and Asp. The value of δA = −h is fed to the feedback
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • data is limited. Moreover, the finite response time of the CL feedback (of the order of milliseconds in some cases) prevents the use of CL KPFM from observing fast electrodynamic processes. Some of these impediments are addressed in OL implementations such as time-resolved electrostatic force
  • measurements. The observed difference in the CPD measured by these two CL KPFM modes is well documented [36][50][51][58] and is related to the physical quantity on which each mode operates. On one hand, the feedback loop of the CL AM-KPFM tries to nullify the magnitude of the electrostatic force developed
  • measurements are made and most likely access to the raw response of the probe under an electrostatic interaction with the sample. These requirements are very hard to be fulfilled by a CL KPFM method, where the momentarily reported CPD is the result of a feedback loop algorithm. However, the data are fully
PDF
Album
Full Research Paper
Published 06 Oct 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
PDF
Album
Review
Published 13 Aug 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • microscopy is an option to study the membrane surface nanoscopically without dye labeling or laser light exposure. In scanning probe microscopy a nanoprobe is kept at a constant distance from the sample surface by maintaining a local interaction signal constant via a feedback loop [16]. If the interaction
  • surface and cell migration happen rather slowly, they should only contribute to low-frequency fluctuations. To investigate the frequency behavior we focus on measuring the height with activated feedback loop in the frequency range of 0.2 to 500 Hz. Most systems exhibit an f−m spectral power density (SPD
  • nanopipette was kept at constant lateral position over the cell and either temporal height variations with activated feedback loop or current variations at deactivated feedback loop were acquired. Temporal current and height spectra were evaluated using the Igor Pro software (WaveMetrics, Inc.). As main
PDF
Album
Full Research Paper
Published 12 Mar 2021

Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector

  • Eduardo Serralta,
  • Nico Klingner,
  • Olivier De Castro,
  • Michael Mousley,
  • Santhana Eswara,
  • Serge Duarte Pinto,
  • Tom Wirtz and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2020, 11, 1854–1864, doi:10.3762/bjnano.11.167

Graphical Abstract
  • controlled by a motion controller (Nanomotion XCDX) using a closed feedback loop with optically encoded linear rails (Schneeberger Miniscale Plus). This construction is compatible with the high-vacuum requirements, is self-locking, requires no mechanical feedthroughs nor lubricants, and provides high
PDF
Album
Full Research Paper
Published 11 Dec 2020

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • cantilever was used, which was cleaned by Ar+ sputtering to remove the oxide and contamination on the tip. The deflection of the cantilever was measured by the optical beam deflection method. The topography of the surface was imaged while feedback electronics were used to adjust the tip–sample distance to
PDF
Album
Letter
Published 19 Nov 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • comments, suggestions, and feedback from his colleagues Inti Zumeta Dubé and Fabián Ruiz Ruiz. Funding Juan Rizo would like to thank CONACyT for his PhD fellowship (grant # 240056). David Diaz wants to thank FQ-UNAM for the financial support from “Programa de Apoyo a los Estudios de Posgrado” (PAEP # 5000
PDF
Album
Full Research Paper
Published 12 Oct 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • output voltage sensor feedback at different humidity levels: 40% (a), 50% (b), 60% (c), 70% (d), 80% (e) and 90% (f). (a) The output voltage of the TVB-TENG as a function of RH (40–90%). (b) A representative photograph of the TVB-TENG. (a) Reversibility of a TVB-TENG-based humidity sensor. (b) The change
PDF
Album
Full Research Paper
Published 11 Sep 2020

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • will foster further investigation with more robust theoretical frameworks such as by density functional theory. Results and Discussion SPM imaging modes The variability observed in differing scanning probe imaging modes originates from the applied feedback mode, different tunnelling parameters, or the
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers

  • Robby Reynaerts,
  • Kunal S. Mali and
  • Steven De Feyter

Beilstein J. Nanotechnol. 2020, 11, 1291–1302, doi:10.3762/bjnano.11.113

Graphical Abstract
  • retracting the STM tip at a certain distance (around 1 nm) from the surface. The feedback loop was turned off to maintain the separation between the tip and the sample during the period of voltage pulse in order to avoid the tip crash onto the surface. The software used for STM imaging does not log the
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • down the sample using the z-piezo of the scanner, causing intermittent contact between the cantilever and the sample [25]. The maximum interaction force is computed and used as feedback by the controller, providing fine force control, reducing shear forces and thus preserving the tip and the sample [26
PDF
Album
Full Research Paper
Published 26 Aug 2020

Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces

  • Karl Rothe,
  • Alexander Mehler,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2020, 11, 1157–1167, doi:10.3762/bjnano.11.100

Graphical Abstract
  • reveal the two rotational senses. Spectra of dI/dV (dots) recorded above the different lobes of C42H28 on Pt(111) (feedback loop parameters prior to spectroscopy: 2.5 V, 100 pA). The solid lines represent smoothed data. The bottom (top) spectrum was acquired atop the left (right) lobe of the molecule as
  • appearing at approx. −0.67 V (feedback loop parameters: −1 V, 50 pA). The solid line represents smoothed data. Inset: STM image of a single C42H28 molecule on Au(111) (−0.65 V, 100 nA, 2 × 2 nm2) with the asterisk marking the position of spectroscopy. (b) Close-up view of the HOMO (H0) vibronic fine
  • structure (feedback loop parameters: −1 V, 50 pA). The presented data (dots) are normalized [38]. Vibronic side bands are labeled H1 and H2. The thick solid line represents a fit of three Lorentzian line shapes (thin gray lines) and a constant background to the data. (c) Normalized dI/dV data (dots) showing
PDF
Album
Full Research Paper
Published 03 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • ) along the perimeter of a SiNW. The tip–sample distance is controlled by a shear-force feedback. For this purpose, the tip is mounted on an oscillating tuning fork, which experiences a phase shift of the oscillation upon approach. This phase shift is recorded with a lock-in amplifier and fed to a
  • feedback loop that maintains a constant distance to the sample. The scanned SiNW perimeter is indicated in Figure 5a. Along the white arrow, there is about 250 nm height difference between the SiNW and the underlying substrate. The white square shown in the optical image in Figure 5b highlights the SiNW
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • electrokinetic (ABEL) trap [10][11][12] was invented. In the ABEL trap, the Brownian motion of a particle is optically monitored, and then a feedback electric field is applied so that the resulting electrokinetic forces induce a drift that exactly cancels the Brownian motion. This can also be achieved by moving
  • the surrounding fluid via electroosmosis where an applied feedback electric field moves a layer of surface ions, which subsequently pulls the fluid, along with any suspended objects, by viscous drag. In such a manner, quantum dots in a liquid have been manipulated with nanometer precision [13]. Real
  • -time force feedback can also be implemented with optical tweezers [14][15][16]. Recently, systems based on high-precision position detection and feedback control running at 100 kHz have been employed to generate arbitrary potentials for micrometer-sized particles [17][18]. A less commonly used
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • (V = 5 mV, I = 1 nA). d) Constant-height dI/dV spectra of MoS2/Ag(111) recorded on a top and on a hollow region of the moiré structure as shown on the inserted STM topography (feedback opened at V = 2.5 V, I = 0.5 nA, Vmod = 10 mV). The inset shows the gap region of MoS2/Ag(111) on a logarithmic
  • , which are labeled by Q, Γ1 and Γ2 according to their location in the Brillouin zone. The assignment follows that in [38]. Constant-height dI/dV spectra recorded (a) on a top and (b) on a hollow site of the moiré structure of MoS2 on Ag(111) (red curves) and on Au(111) (blue curves). Feedback opened at V
  • recorded on a bare MoS2 layer for reference. Feedback opened at V = 2 V, I = 100 pA, with Vmod =20 mV. a–d) Constant-height dI/dV maps of a TCNQ island on MoS2 recorded at the resonance energies derived in Figure 4b. Feedback opened in panels (a–c) V = 2 V, I = 100 pA and (d) V = −2 V, I = 30 pA on the
PDF
Album
Full Research Paper
Published 20 Jul 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • conventional frequency-modulated (FM-) KFM, the contributions at ωm and 2ωm are detected via lock-in techniques, either at the Δf output of a phase-locked loop (PLL) [12] or by detecting the sidebands of the cantilever oscillation [13]. In closed-loop FM-KFM, a feedback loop is employed to nullify the
  • properties of tip and sample, e.g., the dielectric properties of a sample or the quantum capacitance [14]. Furthermore, this signal can be used to adjust the sensitivity of the KFM feedback loop [15]. Open-loop KFM techniques exploit the relationship of the contributions at ωm and 2ωm. Namely, Ulcpd can be
  • a state observer to continuously recover the full Δf(Uts) parabola, also named Kelvin parabola. The maximum frequency shift Δftopo, the contact potential difference Ulcpd, and the capacitance gradient C′′ are evaluated in real time. When applied as closed-loop technique, the height feedback can be
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • laterally relative to the sample. A piezoactuator acting in the z-direction brings the probe closer or further from the sample. Due to non-linear tip–sample interaction forces, the resonance frequency of the oscillating cantilever will shift. This shift can be used as a feedback signal to measure the sample
PDF
Album
Full Research Paper
Published 06 May 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • between many of them leads to the formation of filament-like structures with, as far as we can judge, larger grains than before EM. However, since EM is a process with partial positive feedback, also thinning takes place, but the location cannot be well controlled. Nevertheless, after a competition of
  • mechanical) contact with the contact pads produced by photolithography. To perform EM measurements, an in-house LabVIEW program was developed (following Motto et al. [34]), which allowed for a precise control of the conductance in order to obtain atomic point contacts. Suitable feedback parameters and ramp
  • speeds for the applied bias voltage were selected in the program which consisted of two feedback loops. The starting resistance of the structures was typically between 50 and 100 Ω. When the resistance change between two consecutive measurements was less than the preset value, the ramp voltage was
PDF
Album
Full Research Paper
Published 22 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • of the sample and the deflection error of the AFM tip are recorded. The deflection error represents the feedback signal of the feedback control system for the tip–sample contact force control and is the difference between the set point and the effective value. The ESM signal is based on the real, in
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • feedback control was applied in frequency-modulation mode [30] with constant amplitude oscillation. The cantilever deflection was detected using an optical interferometer [31]. Since the electrostatic force due to the contact potential difference (CPD) between the tip and sample prevents high-resolution NC
  • results confirmed that the (1 × 2) surface prepared in this study is the same surface as in the previous studies [22][27][28][32]. Figure 3 shows STM and NC-AFM images and the height profiles obtained from the same surface area. Since STM and NC-AFM use different feedback signals (interaction force for NC
  • information on the line defect. The line defects could be due to be sub-surface defects because of the geometry of the reflected top surface obtained in NC-AFM imaging using the interaction between the tip and the sample surface as a feedback signal. To identify the line defects, it is necessary to combine
PDF
Album
Full Research Paper
Published 10 Mar 2020
Other Beilstein-Institut Open Science Activities