Search results

Search for "focused ion beam" in Full Text gives 129 result(s) in Beilstein Journal of Nanotechnology.

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • nanometer range is heavily sought after. One promising candidate for ultraprecise nanofabrication is focused ion beam (FIB) machining. Focused ion beams locally remove material based on physical sputtering with a large degree of flexibility due to advanced beam control. FIB patterning is a direct single
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • . The scanning electron microscopy (SEM) image presented in Figure 2 shows the nanostructured section of a fragment of the red region indicated in Figure 1a. The section was partially polished using a focused ion beam (FIB) and the multilayered structure is clearly visible. The corrugated surface is the
PDF
Album
Full Research Paper
Published 28 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • Souza and Attias nicely placed HIM imaging in the context of high-resolution SEM, environmental SEM, cryo-SEM, the usage of cyto-chemistry, and 3D reconstruction with focused ion beam SEM and TEM [85]. Biofilms The large depth of field, the efficient charge compensation and the strong edge contrast make
PDF
Album
Review
Published 04 Jan 2021

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • /bjnano.11.156 Abstract While the application of focused ion beam (FIB) techniques has become a well-established technique in research and development for patterning and prototyping on the nanometer scale, there is still a large underused potential with respect to the usage of ion species other than
  • resolution of Ne+ from a gas field ion source. The comparison allows one to select the best possible ion species for the specific demands in terms of resolution, beam current, and volume to be drilled. Keywords: focused ion beam; gas field ion source; liquid metal alloy ion source; resolution; Introduction
  • In modern nanotechnology, focused ion beam (FIB) techniques are well-established for nanoscale structuring, local surface modification, doping, prototyping, as well as for ion beam analysis. One of the main components of such a FIB system is the ion source providing the needed ion species [1
PDF
Album
Full Research Paper
Published 18 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • of the polymer. Effects of subsurface and surface processes on the surface morphology have been studied for three polymer materials: poly(methyl methacrylate), polycarbonate, and polydimethylsiloxane, by using focused ion beam irradiation with He+, Ne+, and Ga+. Thin films of a Pt60Pd40 alloy and of
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • increased in size (Figure 3e,f). To investigate whether the formed nanoporous microspheres have a hollow interior or not, a cross-section SEM specimen from the sample oxidized for 30 min was prepared using focused ion beam (FIB) (Figure 3e). According to the results, the microspheres were not hollow and the
PDF
Album
Full Research Paper
Published 22 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • ion beam (FIB) technology can also be used to directly fabricate high-precision nanostructures on surfaces made of silicon, silicon dioxide and metal [27][28][29][30][31][32][33]. FIB technology is therefore used as a processing method for SERS substrates. Using the FIB method, Lin et al. [29
  • achieved for 4-mercaptobenzoic acid molecules on the arrayed Au nanoholes. However, lithography-based methods have limitations, as they are inefficient and cannot be exploited for mass production. In addition, it is challenging to use the existing methods to fabricate more complex nanostructures. Focused
PDF
Album
Full Research Paper
Published 16 Oct 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • exploration of nanometer-scale structural modifications of TMD devices [6][7][8]. The localized formation of defects by focused ion beam irradiation has been shown to induce unusual electronic properties in monolayer TMDs, such as pseudo-metallic phase transitions in MoS2 and WSe2 [9][10], resistive switching
PDF
Album
Full Research Paper
Published 04 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • for nanomechanical property mapping, as well as for electrical and magnetic characterization of the sample after focused ion beam materials modification with the HIM. The experimental setup is described and evaluated through a series of correlative experiments, demonstrating the feasibility of the
  • readout of cantilever deflection. Since then, more advanced and versatile combined instruments have been proposed for a broad spectrum of applications in nanoscale characterization and nanoscale fabrication inside SEM and focused ion beam (FIB) setups [7][8][9][10][11]. Given the extent of the interest
  • . Figure 3a and Figure 3b show two AFM topography images of PMMA exposed to a dose of 1 × 1013 cm−2 and 3 × 1013 cm−2 30 keV He ions, respectively, as well as the corresponding height profiles of the irradiated PMMA surface. Focused ion beam damage and implantation can hinder the imaging and nanoscale
PDF
Album
Full Research Paper
Published 26 Aug 2020

3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing

  • Rosa Córdoba,
  • Alfonso Ibarra,
  • Dominique Mailly,
  • Isabel Guillamón,
  • Hermann Suderow and
  • José María De Teresa

Beilstein J. Nanotechnol. 2020, 11, 1198–1206, doi:10.3762/bjnano.11.104

Graphical Abstract
  • nano-antennas and sensors, based on 3D superconducting architectures. Keywords: electron tomography; focused ion beam induced deposition (FIBID); helium ion microscope; magneto-transport measurements; nano-superconductors; tungsten carbide (WC); Introduction Superconductors are dissipationless
  • dramatically, mostly due to the complex fabrication and characterization. A technique successfully utilized for fabricating 3D nano-objects is direct writing by a focused beam of positively charged particles, the so-called focused-ion-beam induced deposition (FIBID) [20]. A very promising development of FIBID
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • -thickness SN-N-SN bilayer in which the superconducting layer is partially (or entirely) etched by means of a focused ion beam. A sufficiently thick normal metal layer act as a good thermal bath, which yields a nonhysteretic current–voltage characteristic even at low temperatures. However, the increase of
PDF
Album
Full Research Paper
Published 02 Jun 2020

A set of empirical equations describing the observed colours of metal–anodic aluminium oxide–Al nanostructures

  • Cristina V. Manzano,
  • Jakob J. Schwiedrzik,
  • Gerhard Bürki,
  • Laszlo Pethö,
  • Johann Michler and
  • Laetitia Philippe

Beilstein J. Nanotechnol. 2020, 11, 798–806, doi:10.3762/bjnano.11.64

Graphical Abstract
  • (yielding to the same porosity), changing only the second anodization time (from 120 to 600 s) to obtain different film thicknesses (from 209 ± 12 nm to 380 ± 15 nm). Focused ion beam (FIB) milling and field-emission scanning electron microscopy (FESEM) imaging were used to accurately determine the
  • focused ion beam (FIB) instrument (TESCAN Lyra, Brno, Czech Republic) with a gallium source at 30 kV and 180–400 pA. 2 µm of platinum was deposited to protect the surface prior to FIB cutting. FESEM images were taken in three different areas of the films and three different measurements were carried out
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • the BNNTs, the PL is photostable, althougt the SPE purity is still not exceptional. In [118] SPE in a ball-like 0D BN allotrope with dimensions ≈1–100 nm, known as nanococoon BNNC, is shown. The density of the SPEs was increased by dual-beam focused ion beam and SEM to selectively irradiate the sample
  • controlled formation and properties. Random generation in the material using bubble strain-induced SPEs is also demonstrated in [125]. Focused ion beam irradiation was used to mill holes in the h-BN to achieve array-like SPEs around the perimeter of the holes [126]. This method yield is very high compared to
  • grown on copper, nickel and iron substrates, with a high density of SPEs of ≈100−200 per 10 × 10 µm2 with more defined ZPLs at (580 ± 10) nm. The most promising approaches seem to be the strain-induced methods and the focused ion beam method, possibly combined with low-pressure CVD for more controlled
PDF
Album
Review
Published 08 May 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • could not be identified visually nor be reproducibly generated. This contrasts with experiments where the smallest constriction was reduced by one order of magnitude down to about 15 nm using a focused ion beam (FIB), i.e., far below the average grain size in the Ag film, in which complex morphological
PDF
Album
Full Research Paper
Published 22 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • spectroscopy (EDS or EDX) it adds chemical information on the elemental distribution to the structural analysis. Further methods that have been applied to study ageing in LFP are X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), transmission electron microscopy (TEM), focused ion beam
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • concentration of 0.01–0.05 mg/mL and deposited on 400 mesh carbon grids (SPI supplies), samples were air dried prior to imaging. Energy-dispersive X-Ray spectroscopy A FIB Scios system was used combined with a scanning electron microscope (SEM) and a focused ion beam equipped with X-MaxN 50 mm2 EDS system to
PDF
Album
Full Research Paper
Published 07 Oct 2019

Precise local control of liquid crystal pretilt on polymer layers by focused ion beam nanopatterning

  • Maxim V. Gorkunov,
  • Irina V. Kasyanova,
  • Vladimir V. Artemov,
  • Alena V. Mamonova and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2019, 10, 1691–1697, doi:10.3762/bjnano.10.164

Graphical Abstract
  • alignment of rubbed polymer layers can be locally flipped to vertical by irradiation with a focused ion beam on a scale of tens of nanometers. Results: We propose a digital method to precisely steer the liquid crystal director tilt at polymer surfaces by combining micrometer-size areas treated with focused
  • appropriate polarized optical interference patterns, induce planar LC alignment with the director rotating within the substrate plane. Recently, we have reported on LC metasurfaces formed due to local transformation of polymer–LC anchoring from planar to vertical by focused ion beam (FIB) [31]. While the
  • ion beam and pristine areas. The liquid crystal tends to average the competing vertical and planar alignment actions and is stabilized with an intermediate pretilt angle determined by the local pattern duty factor. In particular, we create micrometer-sized periodic stripe patterns with this factor
PDF
Album
Full Research Paper
Published 12 Aug 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • 11 wt % PMMA in anisole solvent at 1500 rpm for 5 min, resulting in a thickness of approximately 3.5 µm. Then, a 300 nm thick Au film was sputtered on the PMMA substrate by using magnetron sputtering. The Au film was subsequently patterned by focused ion beam (FIB) milling (FEI, Helios NanoLab 650
PDF
Album
Full Research Paper
Published 07 Aug 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • generated in the analyzer. The work function of the sample was calculated as WF = hν Ecut-off, where Ecut-off was determined from the intersection of the linear extrapolation of the secondary-electron cut-off (SECO) with the background. All samples were sputtered with argon ions using a scanning focused ion
  • beam source in order to remove surface contaminants. A monoatomic argon ion source was utilized with energy of 2 keV, ion current 10 µA, raster area 1 × 1 mm2 and sputtering time 30 s. Results and Discussion Separated metal nanoparticles on the substrate In TE materials the NIs applicable for an
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • electrical contacts with individual nanowires [21][22][23][24][25][26][27][28][29][30][31][32][33]. These contacts can be made by means of photolithography, but more often, focused ion beam (FIB) technology is used for this purpose. This approach has several advantages: first, a reliable electrical contact
  • contamination on the sample surfaces. Device manufacture Manufacture of the device based on a single nanowire Individual nanowires were electrically contacted by direct focused-ion beam (FIB) platinum deposition, using an FEI dual beam Strata 235 instrument combined with a metal–organic injector to deposit
PDF
Album
Full Research Paper
Published 08 Jul 2019

Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping

  • Lukas Grünewald,
  • Dagmar Gerthsen and
  • Simon Hettler

Beilstein J. Nanotechnol. 2019, 10, 1290–1302, doi:10.3762/bjnano.10.128

Graphical Abstract
  • , which induces unwanted scattering events. Results: Phase masks of conductive amorphous carbon (aC) were successfully fabricated with optical lithography and focused ion beam milling. Analysis by TEM shows the successful generation of Bessel and vortex beams. No charging or degradation of the aC phase
  • structure without any (in-)elastic scattering events, i.e., the amplitude is only modified slightly. Experimentally, focused ion beam (FIB) milling or electron-beam lithography are used to engrave a well-defined thickness profile in an amorphous thin film thereby exploiting the direct proportionality
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • present one line for each element. The STEM lamellae were prepared in a focused ion beam (FIB) FEI Dual-Beam Helios 450S with FIB Mo-grids using a technique known as “lift-out” [35]. To improve FIB preparation and visualization of the nanodots in the STEM, the samples were coated with an amorphous carbon
PDF
Album
Full Research Paper
Published 22 May 2019

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • modalities of sample preparation for nanoscale imaging include focused ion beam milling and microtome slicing. When the thickness of samples, especially soft biomaterials, is close to 100 nm the cutting tool might cause tear- and cut-induced strain below the surface. In turn, this can cause artifacts in the
PDF
Album
Full Research Paper
Published 23 Apr 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • invaluable in research and industrial application. Researchers have paid attention to physical methods (“top-down” techniques) such as focused ion beam lithography (FIB) [14][15], electron beam lithography (EBL) [16][17] or soft nanoimprint nanolithography (NIL) [18], which can produce controllable shapes
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
  • joint membrane and a socket septum (Figure 3). The dendrite is enveloped in a dendritic sheath whose base shows a ciliary constriction and runs into the soma region of the sensillum (Figure 3). Tomography images using focused ion beam (FIB) techniques revealed that the two types of setae differ in
  • the microstructures. Furthermore, the microstructures of the setal bases were analyzed using focused ion beam techniques (FIB, Zeiss Auriga 60). In this case, fresh hemelytra were covered with a thin gold layer using a sputter coater (Sputter Coater 108auto, Cressington). Using the FIB system, a
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018
Other Beilstein-Institut Open Science Activities