Search results

Search for "gas injection system" in Full Text gives 37 result(s) in Beilstein Journal of Nanotechnology.

Continuum models of focused electron beam induced processing

  • Milos Toth,
  • Charlene Lobo,
  • Vinzenz Friedli,
  • Aleksandra Szkudlarek and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1518–1540, doi:10.3762/bjnano.6.157

Graphical Abstract
  • continuum FEBIP models. Keywords: continuum model; deposition; electron beam processing; etching; gas injection system; Review Introduction to continuum models of focused electron beam induced processing (FEBIP) Continuum FEBIP models enable the simulation of process rates that govern focused electron
  • produced by a capillary-style gas injection system. We then cover simple continuum models that are valid in the reaction rate limited regime (where net adsorbate transport via surface diffusion is negligible) and can be used to model FEBIP performed using continuous and pulsed electron beams, physisorbed
  • contributions from primary, backscattered and secondary electrons, each of which has a unique spatial profile and a unique energy distribution [19]. Gas flow from a capillary-style gas injection system (GIS) FEBIP precursor gases are injected into a specimen chamber using one of two methods. In the first method
PDF
Album
Review
Published 14 Jul 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • nanolithography technique, based on the local dissociation of adsorbates upon the irradiation with electrons [1]. The molecules are delivered into the microscope chamber by a gas injection system (GIS) where they reversibly physisorb onto the substrate surface. Part of the energy from the primary electron beam or
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • exciting research topic [1][2]. In this technique, a scanning electron microscope (SEM) dissociates the precursor molecules delivered into the area of interest by a gas-injection system, producing a deposit [3][4][5][6]. The use of precursor molecules containing cobalt [7][8][9][10] or iron [11][12][13][14
  • substrates inside an FEI Helios 600 apparatus, using Fe2(CO)9 as precursor and the scanning electron microscope (SEM) to produce magnetic deposits in a single step, as sketched in Figure 1a. The precursor is delivered to the area of interest through a single gas-injection-system (GIS) with inner diameter of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

  • Gian Carlo Gazzadi and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2015, 6, 1298–1305, doi:10.3762/bjnano.6.134

Graphical Abstract
  • scanning electron microscopes (SEM) by installing a gas injection system (GIS). FEBID flexibility has been exploited in applications that are critical for traditional lithography techniques, such as the deposition of electrical connections to isolated nanostructures [3][4] or the fabrication of scanning
PDF
Album
Full Research Paper
Published 11 Jun 2015

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • electron microscope (SEM: FEI, Nova NanoLab 600). The SEM was equipped with a multi-channel gas injection system for FEBID. As substrates we used epi-polished c-cut (0001) Al2O3 with Cr/Au contacts of 3/50 nm thickness prepared by photolithography in conjunction with lift-off. The samples are one Co-FEBID
  • pressure of 1.5 × 10−5 mbar through a home-made gas injection system. The samples were subjected to 12 cycles of oxygen flux switched on for 5 min interrupted by 5-minute turn-offs. The resistivity of the as-deposited Pt-based layers was 0.4 Ω·cm, decreased to about 90 mΩ·cm as the temperature rose to 150
PDF
Album
Full Research Paper
Published 29 Apr 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • purification study in O2 was performed in a standard high-vacuum SEM and the O2 was injected with a localized gas injection system. In the previous study we examined the purification rate as a function of deposit thickness, localized oxygen pressure and oxygen temperature. The results suggested that the rate
  • . (an Oxford Instruments Company) for assistance with the OmniGIS gas injection system. HP acknowledges the support from Prof. Ferdinand Hofer and the Austrian Cooperative Research (ACR) and the Graz University of Technology in Austria.
PDF
Album
Full Research Paper
Published 08 Apr 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • via a dedicated gas injection system where it adsorbs at the surface, undergoes random diffusion and desorbs again after a system-dependent residence time [1][3][4][7][8][9][10][11][12][13][14][15][16][17][18][19]. A major problem of FEBID, however, is the large amount of carbon impurities that often
  • practical output of this study. Experimental FEBID was performed with a FEI Nova200™ dual beam microscope (DBM) equipped with a FEI gas-injection-system (GIS) for Pt deposition, arranged at an angle of 52° and a vertical distance of 120 µm to the substrate with an exact alignment of the GIS main axis with
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

Probing the electronic transport on the reconstructed Au/Ge(001) surface

  • Franciszek Krok,
  • Mark R. Kaspers,
  • Alexander M. Bernhart,
  • Marek Nikiel,
  • Benedykt R. Jany,
  • Paulina Indyka,
  • Mateusz Wojtaszek,
  • Rolf Möller and
  • Christian A. Bobisch

Beilstein J. Nanotechnol. 2014, 5, 1463–1471, doi:10.3762/bjnano.5.159

Graphical Abstract
  • a gas injection system by the electron beam and the FIB beam was used to cut out the lamella. The high resolution (HR) TEM and high angle annular dark field (HAADF) scanning TEM images together with energy dispersive X-ray spectroscopy (EDX) analysis of the sample were obtained by the FEI Tecnai
PDF
Album
Full Research Paper
Published 05 Sep 2014

In situ growth optimization in focused electron-beam induced deposition

  • Paul M. Weirich,
  • Marcel Winhold,
  • Christian H. Schwalb and
  • Michael Huth

Beilstein J. Nanotechnol. 2013, 4, 919–926, doi:10.3762/bjnano.4.103

Graphical Abstract
  • -beam SEM/FIB microscope (FEI, Nova Nanolab 600) equipped with a Schottky electron emitter. The precursor gases are introduced into the high-vacuum chamber via a gas injection system through a thin capillary (diameter = 0.5 mm) in close proximity to the focus of the electron beam. As a substrate
PDF
Album
Full Research Paper
Published 17 Dec 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • throughout the experiments. The DualBeam system is equipped with a standard gas injection system (GIS) with (CH3)3Pt(CpCH3) as organometallic precursor gas. The reservoir temperature was approximately 43 °C. The electron beam used for deposition can be accelerated between 3 kV and 30 kV with a beam current
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • review of the fundamentals FEBID in a nutshell: The FEBID process is based on the electron-induced dissociation of a molecular precursor previously adsorbed on a substrate surface and constantly replenished by a gas-supply system. In most instances the gas-supply or gas-injection system consists of a
PDF
Album
Video
Review
Published 29 Aug 2012

Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

  • Kaliappan Muthukumar,
  • Harald O. Jeschke,
  • Roser Valentí,
  • Evgeniya Begun,
  • Johannes Schwenk,
  • Fabrizio Porrati and
  • Michael Huth

Beilstein J. Nanotechnol. 2012, 3, 546–555, doi:10.3762/bjnano.3.63

Graphical Abstract
  • injection system for 30 min, causing a pressure increase to 3 × 10−5 mbar, which dropped within ten minutes to about 6 × 10−6 mbar. The gas injection system employs a stainless-steel precursor capsule with a fine-dosage valve. The precursor temperature was set by the ambient conditions to 27 °C. From the
  • known precursor temperature and associated vapor pressure, as well as the geometry of our gas injection system we can roughly estimate the maximum molecular flux at the substrate surface to be 1.4 × 1017 cm−2 s−1 following [34]. In the second series of experiments the untreated silica surface was
  • discharge for 75 min after the scanning electron microscope (SEM) chamber had been evacuated to its base pressure of about 5 × 10−6 mbar. After the plasma treatment the chamber was again evacuated to base pressure and Co-precursor flux was admitted to the chamber by opening the valve of a home-made gas
PDF
Album
Full Research Paper
Published 25 Jul 2012
Other Beilstein-Institut Open Science Activities