Search results

Search for "insect" in Full Text gives 57 result(s) in Beilstein Journal of Nanotechnology.

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • studying cellular toxicity, response to new drugs [78] and environmental pollution. Silkworm (Bombyx mori) is an invertebrate insect widely used as a model organism in life sciences [79] since it has diverse mutant strains, a complete genome sequenced, and a protein database available [80][81]. There are
  • resources [82][83]. It is relatively easy to obtain organs and genes from the silkworm compared to the fruit fly, which requires the use of a microscope due to its small body size. The fruit fly is also a prolific invertebrate insect with notable features and its genes are used as tools to study embryonic
PDF
Album
Review
Published 12 Feb 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • et al. [75]. Their study examined how the surface texture of genetically different samples varied after acid treatment to see the potential for enzymatic biofuel production. HIM imaging was once again used in studies of insect wings and their nanostructures by Bandara et al. [76][77]. In this case, a
PDF
Album
Review
Published 04 Jan 2021

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • organisms [1]. All biological signal transport and transduction processes, including pain, haptics, vision, audition, olfaction, and muscular movement, as well as energy conversion and consumption are associated with ion transport [2][3]. For example, a plant injured on one leaf by a nibbling insect can
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae)

  • Liesa Schnee,
  • Benjamin Sampalla,
  • Josef K. Müller and
  • Oliver Betz

Beilstein J. Nanotechnol. 2019, 10, 47–61, doi:10.3762/bjnano.10.5

Graphical Abstract
  • of insect adhesion have been performed with ‘good plant climbers’ [4][5][6][7]. Although burying beetles can be observed climbing plants to reach a better position from which to start flying to their carrion resources [1], they do not primarily use their tarsi in the context of plant climbing
  • smooth vertical (glass) surfaces, the question arose regarding the functional reason for this observed difference in attachment performance. Such large performance differences between closely related insect species of the same genus have seldom been reported [6] but have the potential to provide major
  • clues concerning the mechanisms behind insect attachment. Although burying beetles appear not to be especially adapted to smooth and slippery plant surfaces, N. nepalensis is known as a ‘good climber’ [2] and both the investigated species exhibit, like other burying beetles [8], many tarsal adhesive
PDF
Album
Full Research Paper
Published 04 Jan 2019

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
  • serve a sensory function. We suggest that this predatory aquatic insect can detect pressure changes and water movements by sensing volume changes of the air layer under water. In the present study, we used a variety of microscopy techniques to investigate the fine structure of the hemelytra. Furthermore
  • the course of about 3.7 billion years of biological evolution [1][2][3], a stunning diversity of surface architectures has evolved. Today, millions of living prototypes (species) exist, waiting to be used for the development of biomimetic technical innovations [4][5]. Well know examples are insect
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • ][201]. These superhydrophobic materials were useful in applications such as water treatment [202][203], wettability switchers [204][205], smart actuators [206], transparent coatings and electrodes [207][208][209]. Nanoparticles and nanostructures in insects Insect wing membranes are comprised of
  • building materials with 0.5 µm to 1 mm thickness [212]. Additionally, the insect wings are formed by a complex vein system which gives superior stability to the entire wing structure [213][214][215]. Long chain crystalline chitin polymer is the basic framework of insect wings that provides membrane support
  • their weightless wing material [220][221][222]. Insect wing surfaces demonstrate a rough and highly ordered structure comprised of micro- and nanoscale properties to minimize their mass and protect them against wetting and pollutants. A methodical terminology to explain the structural properties of
PDF
Album
Review
Published 03 Apr 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • function such as digestion, locomotion, or flight. Unlike vertebrates, however, all insect muscle is striated and under voluntary control [17]. Despite the variation in characteristics and usage, all muscle is dependent on the interaction between the proteins actin and myosin at the most basic level. A
PDF
Album
Review
Published 19 Mar 2018

Effect of microtrichia on the interlocking mechanism in the Asian ladybeetle, Harmonia axyridis (Coleoptera: Coccinellidae)

  • Jiyu Sun,
  • Chao Liu,
  • Bharat Bhushan,
  • Wei Wu and
  • Jin Tong

Beilstein J. Nanotechnol. 2018, 9, 812–823, doi:10.3762/bjnano.9.75

Graphical Abstract
  • hindwings of the H. axyridis was established, and its underlying mechanism is discussed. Keywords: anti-wetting; folding process; interlocking mechanism; micro air vehicles; microtrichia; Introduction Insect wings have many properties, such as lightness, thinness, high flexibility and high load capacity
  • °). Some studies of dragonfly and damselfly wings have demonstrated that CAs are in the range of 120–136° [29]. The results of these studies demonstrate that insect wings have hydrophobic activities. Some insects can perform normal flapping flight in the rain, and their wings are kept dry, allowing them to
  • contend with environmental risks [30][31][32][33]. In addition, dirt on insect wings may increase wind resistance and energy consumption [34], and the hydrophobic structure of the microtrichia may also prevent dust intrusion so that the wings can be kept clean, thereby improving flight efficiency. More
PDF
Album
Full Research Paper
Published 06 Mar 2018

Surfactant-induced enhancement of droplet adhesion in superhydrophobic soybean (Glycine max L.) leaves

  • Oliver Hagedorn,
  • Ingo Fleute-Schlachter,
  • Hans Georg Mainx,
  • Viktoria Zeisler-Diehl and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2017, 8, 2345–2356, doi:10.3762/bjnano.8.234

Graphical Abstract
  • mechanical stability [5]. Furthermore, the cuticle interacts with its biotic environment and plays a crucial role for insect signaling [6] and insect attachment [7][8][9]. The leaf surfaces are composed of epidermis cells covered by a cuticle, which is a continuous extracellular membrane on primary plant
PDF
Album
Full Research Paper
Published 08 Nov 2017

Collembola cuticles and the three-phase line tension

  • Håkon Gundersen,
  • Hans Petter Leinaas and
  • Christian Thaulow

Beilstein J. Nanotechnol. 2017, 8, 1714–1722, doi:10.3762/bjnano.8.172

Graphical Abstract
  • wetting states with any value of θ0 [26], but such structures are not a universal trait in these animals [5][6]. The upper limit of θ0 is about 120° for real surfaces, observed on perfluorinated polymers, or 156 ° for a theoretical surface with no surface tension [27]. Insect waxes fall in the range of 90
  • for a smooth solid). This range of inherent contact angles is not sufficient to explain the range of observed apparent contact angles. The assumption for Collembola cuticles in this work was θ0 = 105°, which corresponds to that of many insect waxes [28][29]. The model for predicting apparent contact
PDF
Album
Full Research Paper
Published 18 Aug 2017

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • surface, rather than any simplified parameter, determines the final observed contact angle. Chemical analyses of insect tarsal fluid motivated Speidel et al. to prepare 12 biologically inspired, heterogeneous, synthetic emulsions. The microscopic structure was analysed and adhesive, frictional, and
  • rheological properties were tested. The authors have clearly demonstrated that by varying their chemical composition, synthetic heterogeneous emulsions can be adjusted to have diverse consistencies and mimic certain rheological and tribological properties of natural tarsal insect adhesives [23]. In one of the
PDF
Editorial
Published 08 Feb 2017

Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives"

  • Matthias W. Speidel,
  • Malte Kleemeier,
  • Andreas Hartwig,
  • Klaus Rischka,
  • Angelika Ellermann,
  • Rolf Daniels and
  • Oliver Betz

Beilstein J. Nanotechnol. 2017, 8, 45–63, doi:10.3762/bjnano.8.6

Graphical Abstract
  • Background: Based on previous chemical analyses of insect tarsal adhesives, we prepared 12 heterogeneous synthetic emulsions mimicking the polar/non-polar principle, analysed their microscopical structure and tested their adhesive, frictional, and rheological properties. Results: The prepared emulsions
  • able to mimic certain rheological and tribological properties of natural tarsal insect adhesives. Keywords: adhesion; bionics; emulsion; friction; insects; Introduction During evolution, insects have developed the ability to move vertically and upside-down on various kinds of surface, a feat that has
  • by the adhesive secretion [7][8][9][10][11][12]. Recently, the suggestion has been made, that during friction regimes, insect adhesives induce rate-dependent viscosity changes caused by non-Newtonian shear strains [5][13][14]. Chemical analyses of adhesive insect secretions employed during locomotion
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • asperities. The most relevant study in this regard is that of Zhou et al. [17], who tested both the smooth insect pads of cockroaches and the hairy adhesive pads of beetles on nanofabricated surfaces with controlled roughness parameters (the height and spacing of asperities), and found that both parameters
  • an artificial insect leg, Song et al. [46] claim that, in situations where both claws and pads are both operating, the total force may even exceed the sum of the forces that either system, acting on its own, would have produced. A number of plants have evolved structures that deter insects (e.g
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

Surface roughness rather than surface chemistry essentially affects insect adhesion

  • Matt W. England,
  • Tomoya Sato,
  • Makoto Yagihashi,
  • Atsushi Hozumi,
  • Stanislav N. Gorb and
  • Elena V. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1471–1479, doi:10.3762/bjnano.7.139

Graphical Abstract
  • attachment of the beetles. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles. Keywords: insect attachment; superhydrophilicity; superhydrophobicity; superoleophobicity; surface structures; Introduction The development of functional coatings that
  • to identify the most important parameters influencing insect attachment. Many insects, including beetles, can attach to inverted surfaces using specific hairy adhesive pads, covered with tenent setae, which secrete an adhesive fluid which typically consists of a mixture of alcohols, fatty acids, and
  • hydrocarbons [26][27][28][29][30][31][32]. Several hypotheses exist on how plant surfaces prevent insect attachment. These are typically based on (1) the reduction of the contact area between the substrate and the insect adhesive pad through surface micro-roughness, (2) a decrease in substrate surface energy
PDF
Album
Full Research Paper
Published 18 Oct 2016

Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata)

  • Lars Heepe,
  • Jonas O. Wolff and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1322–1329, doi:10.3762/bjnano.7.123

Graphical Abstract
  • not only dry adhesive setae are affected by ambient humidity, but also setae that stick due to the capillarity of an oily secretion. Keywords: adhesion; beetle; biomechanics; force measurement; friction; insect; locomotion; surface; Introduction Substrate attachment plays an important role in the
  • presence of these secretions is crucial for the function of insect adhesive organs [6][36]. Adhesion is affected, if the water content of the secretion is manipulated by a water adsorbing substrate [28]. However, it is not clear, how the thickness and composition of the secretion fluid film are affected by
  • ) humidity-dependent material properties of insect cuticle and β-keratin (main constituent of gecko setae) [41][42][43][44]. In geckos, the effect of a RH on viscoelastic properties of the setal shaft was shown [13]. It was argued that with an increasing humidity the viscoelastic bulk energy dissipation
PDF
Album
Full Research Paper
Published 22 Sep 2016

Functional diversity of resilin in Arthropoda

  • Jan Michels,
  • Esther Appel and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1241–1259, doi:10.3762/bjnano.7.115

Graphical Abstract
  • elastomeric proteins existing in arthropods. The first description of resilin, which has often been called rubber-like protein, was based on analyses of three different insect exoskeleton elements: the wing hinge and the prealar arm of the desert locust (Schistocerca gregaria) (also described for the
  • times its original length and compressed to one third of its original length, and when the tensile and compressive forces are released, resilin goes back to its initial state without having any residual deformations [3][4][13]. Until today, resilin has been found to exist mainly in insect exoskeleton
  • and membranous areas of insect wings [21][22][24], the food-pump of reduviid bugs [51], tymbal sound production organs of cicadas [52][53] and moths [54], abdominal cuticle of honey ant workers [55] and termite queens [56], the fulcral arms of the poison apparatus of ants [57] and the tendons of
PDF
Album
Review
Published 01 Sep 2016

The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera)

  • Jiyu Sun,
  • Wei Wu,
  • Mingze Ling,
  • Bharat Bhushan and
  • Jin Tong

Beilstein J. Nanotechnol. 2016, 7, 904–913, doi:10.3762/bjnano.7.82

Graphical Abstract
  • action [18]. The unfolding action comes from the contraction of muscles [1][8]. An insect wing consists of a thin membrane and a system of veins. There are cavities within major veins that contain nerves and trachea, and because they are connected with the hemocoel, hemolymph can flow into the wings
  • (CFD) solver. To simulate the insect wing veins within the fluid flow during the unfolding process, the CFD solver, FLUENT 6.3.26, was used to solve the momentum conservation equations (Navier–Stokes equation, NS equation) based on the pressure method. The motion of an unfolding wing was modeled by
PDF
Album
Full Research Paper
Published 23 Jun 2016

Mandibular gnathobases of marine planktonic copepods – feeding tools with complex micro- and nanoscale composite architectures

  • Jan Michels and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2015, 6, 674–685, doi:10.3762/bjnano.6.68

Graphical Abstract
  • it would be rather difficult to get reliable results. For insect mandibles, many of which are known to contain relatively high concentrations of zinc and manganese [40][41], it has been shown that the metal incorporations increase the hardness of the mandible material [42][43]. Copepod gnathobases
  • silica very likely increases the hardness and stiffness of the gnathobase teeth and therefore has a similar effect as zinc and manganese have in insect mandibles. Mandibular gnathobases, diatom frustules and the evolutionary arms race In addition to the presence of mechanically stable silica-containing
PDF
Album
Video
Review
Published 06 Mar 2015

Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings

  • Francesco De Nicola,
  • Paola Castrucci,
  • Manuela Scarselli,
  • Francesca Nanni,
  • Ilaria Cacciotti and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 353–360, doi:10.3762/bjnano.6.34

Graphical Abstract
  • of water [9]. In particular, hierarchical surface morphologies are a recent concept introduced to explain the wetting properties of surfaces such as plant leaves [2][3], bird feathers [10], and insect legs [11]. These surfaces are made of a hierarchical micro- and nanomorphology which improves their
PDF
Album
Full Research Paper
Published 02 Feb 2015

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • surrounding and separating the two surfaces brought into contact. Some unusual immersed attachment examples might be an insect stepping into a droplet of water sitting on a branch. The size scale of the droplet is such that the entire attachment process is occurring underwater. However, in this very example
  • we can see a gray area in that the foot has recently been dry, so the tendency of air to surround the attachment organ as it penetrates the droplet may be important. Our generalizations about aquatic environments apply when the foot of the insect brings none of the terrestrial environment with it
  • to an underwater substrate just to keep from floating to the surface. Inertial forces For an animal sitting on a leaf moving in the wind, an insect landing on a substrate, a clingfish attaching to kelp moving in the current, or simply during walking on a substrate, inertial forces contribute to
PDF
Album
Review
Published 17 Dec 2014

From sticky to slippery: Biological and biologically-inspired adhesion and friction

  • Stanislav N. Gorb and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2014, 5, 1450–1451, doi:10.3762/bjnano.5.157

Graphical Abstract
  • of cells, insect feet, snake skin, plant traps, and bird wings are just a few striking examples of a tremendous diversity of biological surfaces and systems with remarkable contact behavior about many of which our knowledge is limited compared to medically relevant biotribosystems. Since the 90s a
  • theoretical studies which range from insect adhesion, bacterial adhesion and skin friction to artificial biomimetic systems, e.g., snake-skin inspired polymer patterns or gecko tape. The Thematic Series does not attempt to give a comprehensive overview of the emerging field of biological contact mechanics
PDF
Album
Video
Editorial
Published 03 Sep 2014

Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

  • Jan-Henning Dirks

Beilstein J. Nanotechnol. 2014, 5, 1160–1166, doi:10.3762/bjnano.5.127

Graphical Abstract
  • morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple “wet adhesion” model is used, in which two flat undeformable substrates are separated by a continuous layer of fluid. This
  • review summarizes the key physical and tribological principles that determine the adhesion and friction in such a model. Interestingly, such a simple wet-adhesion model falls short in explaining several features of insect adhesion. For example, it cannot predict the observed high static friction forces
  • these assumptions are not valid in many cases of insect adhesion. Future tribological models for insect adhesion thus need to incorporate deformable adhesive pads, non-Newtonian properties of the adhesive fluid and/or partially “dry” or solid-like contact between the pad and the substrate. Keywords
PDF
Album
Video
Review
Published 28 Jul 2014

Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths

  • Elena Gorb,
  • Sandro Böhm,
  • Nadine Jacky,
  • Louis-Philippe Maier,
  • Kirstin Dening,
  • Sasha Pechook,
  • Boaz Pokroy and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2014, 5, 1031–1041, doi:10.3762/bjnano.5.116

Graphical Abstract
  • experimental studies. The aim of this study was to examine the effect of different parameters of crystalline wax coverage on insect attachment. We performed traction experiments with the beetle Coccinella septempunctata and pull-off force measurements with artificial adhesive systems (tacky
  • 30 fold, reduction of insect attachment forces on the wax surfaces when compared with the reference glass sample. Attachment of the beetles to the wax substrates probably relied solely on the performance of adhesive pads. We found no influence of the wax coatings on the subsequent attachment ability
  • of beetles. The obtained data are explained by the reduction of the real contact between the setal tips of the insect adhesive pads and the wax surfaces due to the micro- and nanoscopic roughness introduced by wax crystals. Experiments with polydimethylsiloxane semi-spheres showed much higher forces
PDF
Album
Full Research Paper
Published 14 Jul 2014

Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

  • Seonki Hong,
  • Hyukjin Lee and
  • Haeshin Lee

Beilstein J. Nanotechnol. 2014, 5, 887–894, doi:10.3762/bjnano.5.101

Graphical Abstract
  • ][8][9]. For insect cuticles, the quinone tanning (i.e., sclerotization) occurs via crosslinking of cuticular proteins in which primary amines, secondary amines, and phenols from the proteins react with N-acetylcatecholamines [9][10][11]. For squid beaks, the reaction between the imidazole of
  • amine-involved quinone tanning reactions for the formation of stiff insect cuticles [7][8][9][10][11][27] by a reaction between imidazole (side-chain of histidine) and catechol. So far, the majority of research was focused on catechol–catechol crosslinking [25][30][31], accidentally ignoring the
  • . Biomaterials formed by quinone tanning processes found in (a) squid beaks, (b) insect cuticles, and (c) mussel adhesives. Representative chemical reactions were shown for each biomaterials (a,b,c top). Synthetic PEG derivatives that can mimic the natural catecholamine-involved quinone tanning due to the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2014

Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects

  • Stanislav N. Gorb and
  • Alexander E. Filippov

Beilstein J. Nanotechnol. 2014, 5, 837–845, doi:10.3762/bjnano.5.95

Graphical Abstract
  • various lineages of arthropods. Keywords: adhesion; attachment; biomechanics; computer modelling; cuticle; locomotion; material; surface; Introduction The contact formation of insect adhesive pads on various substrates depends on the pad ability to adapt to different surface topographies. The quality of
  • contact may be increased due to the presence of specific micro- and nanostructures [1][2][3][4][5]. Crack trapping mechanisms in adhesive systems with multiple contacts provide advantages in attachment on rough substrates [6]. Also hierarchical organization of insect pad structures enables formation of
  • stability [9]: insect setae made of too soft material can buckle and collapse resulting in so called clusterisation/condensation [10][11]. Due to such clusterisation, functional advantage from multiple adhesive contacts may strongly decrease. That is why, material properties of insect adhesive setae
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2014
Other Beilstein-Institut Open Science Activities