Search results

Search for "interface" in Full Text gives 920 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • in Figure 1. Review Nanostructured carbon-containing materials at biological interfaces Interfaces between artificial and biological environments play a critical role for the design and long-term performance of any artificial implant [25][26]. The interface between an implant and the biological
  • another (inter-layer transport) and is the source of the large anisotropy typically displayed between in-plane and out-of-plane carrier mobilities [42]. Carrier injection is usually determined by energy band alignment and interface transparency, and it is limited by the number of available conduction
  • pathways and the existence of a tunnel barrier between graphene flakes [43]. Accordingly, the transparency of the interface between different flakes determines whether the inter-flake transport is diffusive or hopping-type regardless of the intrinsic mechanisms responsible for intra-flake transport in
PDF
Album
Review
Published 16 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • interface dielectric layer. The body channel, source and drain regions were homogeneously doped. The surrounding-gate architecture improves the sensitivity of the biosensor via the bulk conduction process and reduces short-channel effects. Additionally, it has been demonstrated that the SRG JL concept
  • ]. This structure uses two surrounding nanogap cavities separated by HfO2 as a high-k dielectric material and SiO2 as an interface layer. It has been reported that this structure offers higher sensitivity compared to that of the dual-material JL MOSFET-biosensor proposed by Ahangari et al. [74] and the
PDF
Album
Review
Published 06 Aug 2024

Beyond biomimicry – next generation applications of bioinspired adhesives from microfluidics to composites

  • Dan Sameoto

Beilstein J. Nanotechnol. 2024, 15, 965–976, doi:10.3762/bjnano.15.79

Graphical Abstract
  • sockets that interface with individuals with limb differences. Enhancing comfort requires the socket to precisely match the stiffness and shape of the body. However, there are significant differences between individuals and even within an individual over the course of their life, which should be easily
PDF
Album
Supp Info
Perspective
Published 05 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • from bottom to top: Si substrate, layer of SiOx formed at the interface between the Si bulk material and the deposited Pt, deposited Pt, partially purified halo, and PtCx protection layer. SEM images of square patterns of 150 × 150 nm2 (patterned at 5 keV, 10 µs dwell time, 4 nm pitch, 1, 5, 10, 50
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

The effect of age on the attachment ability of stick insects (Phasmatodea)

  • Marie Grote,
  • Stanislav N. Gorb and
  • Thies H. Büscher

Beilstein J. Nanotechnol. 2024, 15, 867–883, doi:10.3762/bjnano.15.72

Graphical Abstract
  • force measurements were conducted using a BIOPAC MP100 data acquisition system with a TCI-102 interface (BIOPAC Systems, Inc., USA) and a 100g force transducer (Fort100, World Precision Instruments, Sarasota, FL) using the setup described in Winand and coworkers [37]. We measured pull-off (perpendicular
  • surface, leading to obstacles for contact formation at the interface between the pad and substrate [11]. Ridgel et al. [16] noticed dry and dark pads in aged cockroaches, but they could not explain why the pads changed appearance and properties. Zhou et al. [17] assumed sclerotized scars to negatively
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2024

Investigation on drag reduction on rotating blade surfaces with microtextures

  • Qinsong Zhu,
  • Chen Zhang,
  • Fuhang Yu and
  • Yan Xu

Beilstein J. Nanotechnol. 2024, 15, 833–853, doi:10.3762/bjnano.15.70

Graphical Abstract
  • of lotus leaves [4]. A thin gas film captured by the superhydrophobic structure creates a slip interface between gas and liquid, which effectively improves the drag reduction and antifouling performance of lotus leaves [5]. However, the structures on biological surfaces are rather complex and not
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2024

Intermixing of MoS2 and WS2 photocatalysts toward methylene blue photodegradation

  • Maryam Al Qaydi,
  • Nitul S. Rajput,
  • Michael Lejeune,
  • Abdellatif Bouchalkha,
  • Mimoun El Marssi,
  • Steevy Cordette,
  • Chaouki Kasmi and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2024, 15, 817–829, doi:10.3762/bjnano.15.68

Graphical Abstract
  • cost-effective technology. By harnessing impinging photons, the photocatalytic degradation of pollutants takes place at the interface between the photocatalyst surface and the MB-contaminated electrolyte. The photon energy is the driving force for breaking down the MB compound leading to its removal [9
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • particle. A density functional theory structural aims to understand the atomic arrangement at the interface of the Janus particle. Keywords: bimetallic nanoparticles; inert gas condensation; Janus nanoparticles; silver–palladium nanoparticles; Introduction Janus-type nanoparticles are specific structures
  • carried out by molecular dynamics and TEM simulations to investigate the atomic ordering and orientation of the crystal lattice, while a detailed description of the atomic arrangement at the interface between the two metals was obtained using density functional theory (DFT). Experimental In this work, the
  • this model, we deposited a Pd slab on top of a Ag slab. The lattice mismatch between them is 4.6%. In this way, the Pd lattice parameter is adjusted to the Ag parameter. The calculated Ag–Pd (111) distance at the interface is 2.31 Å. Meanwhile, the interplanar distances after the interface layers shift
PDF
Album
Full Research Paper
Published 04 Jul 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • Equation 8 is entirely a consequence of a non-negligible σs; if we set σs = 0, the time evolution cancels, and we recover the expected solution for a dielectric interface. When the tip oscillates or an AC voltage is applied, the oscillating electric field produces Joule dissipation at the surface as well
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • directly coincides with the interface between the different materials. In contrast, the deeper trenches presented in Figure 3c,d cut through the SiO2 layer, and their bottom is located in the crystalline silicon substrate. The small bright regions near the bottom of the trenches correspond to the implanted
PDF
Album
Full Research Paper
Published 24 Jun 2024

Reduced subthreshold swing in a vertical tunnel FET using a low-work-function live metal strip and a low-k material at the drain

  • Kalai Selvi Kanagarajan and
  • Dhanalakshmi Krishnan Sadhasivan

Beilstein J. Nanotechnol. 2024, 15, 713–718, doi:10.3762/bjnano.15.59

Graphical Abstract
  • low work function is placed in a high-k HfO2 layer in the source–channel region. The device is examined by the parameters Ioff, subthreshold swing, threshold voltage, and Ion/Ioff ratio. The introduction of a live metal strip in the dielectric layer closer to the source–channel interface results in a
  • previously published model, the proposed design uses a low-k material in the drain region to reduce Cgd. A metal strip with low work function placed at the source–channel interface causes an abrupt change in electron concentration, increasing the tunneling rate [14][15][16][17][18]. Molybdenum, used here as
  • drain. Molybdenum is implanted in the oxide layer (HfO2) near the source–channel interface and connected to gate to make it live. The work function of molybdenum is 4.53 eV. Table 1 lists the physical dimensions of the tool used for technology computer-aided design simulations. The suggested VTFET is
PDF
Album
Full Research Paper
Published 19 Jun 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • to a specific fragrance [153]. Thermosensation Hair can also act as a temperature sensor, helping organisms to choose the right temperature environment to keep their body thermally stable. The receptors typically have a short hair that protrudes through a small hole to interface with the environment
PDF
Album
Review
Published 06 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2024

AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode

  • Hendrik Müller,
  • Hartmut Stadler,
  • Teresa de los Arcos,
  • Adrian Keller and
  • Guido Grundmeier

Beilstein J. Nanotechnol. 2024, 15, 603–611, doi:10.3762/bjnano.15.51

Graphical Abstract
  • intensity of this band increases again in the measurement of the 5 nm SiOx layer. The results seem to indicate that the band at 1455 cm−1 could be associated to bulk regions within the polypropylene, further away from the interface to the SiOx. To highlight the advantage of the surface-sensitive mode and to
PDF
Album
Correction
Full Research Paper
Published 24 May 2024

On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems

  • Shan He,
  • Julen Segura Abarrategi,
  • Harbil Bediaga,
  • Sonia Arrasate and
  • Humberto González-Díaz

Beilstein J. Nanotechnol. 2024, 15, 535–555, doi:10.3762/bjnano.15.47

Graphical Abstract
  • N2D3Ss for diagnosis and treatment [12][13][14][15]. Also, over the last few years, artificial intelligence/machine learning (AI/ML) models have been applied successfully to solve problems in different disciplines, especially in the interface of chemistry and ND research [16][17][18][19]. In this regard
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • , bottom). This is ascribed to surface reactions with residual gases such as CO and H2O (see below). After a deposition step, CKLL and even more OKLL electrons from these impurities at the interface between the Ta substrate and the deposit can contribute to the total signal within and even beyond the
  • reactions of precursors on the substrate can contribute to the first stages of deposit growth [27]. Also, residual gases may react with the Ta surface even under UHV conditions. As outlined above, elements that are, in consequence of such reactions, located at the interface between the Ta substrate and the
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • PC via a GPIB interface for further data processing. Raman scattering (RS) spectra were recorded at room temperature with a Sol Instruments MS750 confocal system equipped with a laser excitation source of 785 nm (Coherent-Ondax LM series, optical power 7.5 mW). A 100× microscope objective lens was
PDF
Album
Full Research Paper
Published 02 May 2024

Superconducting spin valve effect in Co/Pb/Co heterostructures with insulating interlayers

  • Andrey A. Kamashev,
  • Nadir N. Garif’yanov,
  • Aidar A. Validov,
  • Vladislav Kataev,
  • Alexander S. Osin,
  • Yakov V. Fominov and
  • Ilgiz A. Garifullin

Beilstein J. Nanotechnol. 2024, 15, 457–464, doi:10.3762/bjnano.15.41

Graphical Abstract
  • sufficient detail, and recent results indicate that significant values of the SSV effect have already been achieved in F1/F2/S structures [35][36][39]. Since the principle of a SSV relies on the S/F proximity effect, which is confined to the interface between the S and F layers, particular attention was paid
  • to the quality of this interface in terms of its morphology, smoothness, and absence of intergrowth, which defines the mainstream approach in this field. At odds with this approach, a significant SSV effect of ΔTc ≈ 0.3 K in an FeNi/In/Ni heterostructure with intentionally oxidized F/S interfaces was
  • oxidized layers became insulating but presumably remained magnetic. In a later experiment by Li et al. [41], the F layers themselves were insulating by design. In this special situation, even a very thin additional nonmagnetic insulating interlayer at the interface immediately suppressed the S/F proximity
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • exceed the ultimate strength of Ag NWs. Based on these facts, we expect that the thermal expansion of Ag NWs will compete with friction forces between the NWs and Si substrate, causing significant mechanical stresses inside the NWs, especially at the interface between the two materials. This may serve as
  • mechanical stresses in a partially suspended NW, we performed corresponding FEM simulations (Supporting Information File 1, Figure S3). According to simulations, the highest stresses (up to 1.5 × 109 N/m2) are concentrated at the interface between the adhered part and the Si substrate, followed by the
  • stresses in the middle of the suspended part (up to 1 × 109 N/m2). In this simplified idealistic model, the contact between a NW and Si is absolutely rigid, preventing any slippage or plastic deformation at the interface. Moreover, FEM simulations do not include possible rearrangement of atoms that can
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • ]. The heterostructures increase surface electron deficiency, redox couples, and oxygen vacancies through an intrinsic electric field and lattice mismatch at the metal–semiconductor interface. Thus, a high level of oxygen vacancies enhances the adsorption and activation of oxygen-containing ROS, that is
PDF
Album
Review
Published 12 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • amorphous/crystalline (a/c) interface is formed and further incoming ions create damage beyond this interface or end-range (ER) defects are produced. The irradiated Ge and Si targets clearly show visible damage peaks between channel numbers (1000–1100) for Si and (1500–1600) for Ge. The clustering of
  • a/c interface results in an increase in the BS yield towards lower channel numbers. The RBS is effective and accurate in determining the sputtering yield for Si and Ge upon incident Ar+ at 60°. It can be concluded that Ar is creating more defects in Si as compared to that in Ge, resulting in near
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Modulated critical currents of spin-transfer torque-induced resistance changes in NiCu/Cu multilayered nanowires

  • Mengqi Fu,
  • Roman Hartmann,
  • Julian Braun,
  • Sergej Andreev,
  • Torsten Pietsch and
  • Elke Scheer

Beilstein J. Nanotechnol. 2024, 15, 360–366, doi:10.3762/bjnano.15.32

Graphical Abstract
  • (Imicro), the transverse instability makes the magnetization change along the interface, opening low-resistivity paths for both spin-up and spin-down electrons at different spatial positions of the magnetic layer, and thus reduces (dV/dI)red. The current densities of Ic+, Ic−, and Imicro are estimated to
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • . It is observed that the as-deposited NS-WOx/p-Si heterostructures are quasi-ohmic in nature. The annealed counterparts exhibit a relatively higher rectification, which points towards a possible defect-dependent Fermi level pinning at the hetero-interface. Overall, our systematic experimental
  • regarded as an interlayer between the p-Si substrate and the Ag electrode. The glancing angle (87°) growth of a 6 nm film is likely to sustain a large number of metal (Ag)-induced gap states at the NS-WOx/p-Si interface, leading to Fermi level pinning, the degree of pinning being directly related to film
  • post-growth annealing in vacuum of NS-WOx/p-Si samples generates an enhanced OV concentration (as observed from the XPS analysis) in the WOx films, which eventually contributes to a higher number of gap states within the film as well as at the WOx/p-Si interface. Since the Fermi level pinning becomes
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024
Graphical Abstract
  • a vital role in adhesion to the hydro–water interface and solid surfaces, providing an idea about the viability and permeability of the cell membrane under stress. As most of the cell surface carries a negative charge, metals with higher zeta potential can easily enter the cell and increase the
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Multiscale modelling of biomolecular corona formation on metallic surfaces

  • Parinaz Mosaddeghi Amini,
  • Ian Rouse,
  • Julia Subbotina and
  • Vladimir Lobaskin

Beilstein J. Nanotechnol. 2024, 15, 215–229, doi:10.3762/bjnano.15.21

Graphical Abstract
  • provide valuable insights into the mechanisms of lactose and protein deposition on aluminum surfaces, which can aid in the general understanding of protein corona formation. Keywords: all atomistic; aluminum; bionano interface; coarse grained model; lactose; milk protein; multiscale modelling; protein
  • corona; Introduction The interface between biological systems and engineered materials has gained significant attention in recent years because of its wide range of applications, spanning from food to medicine and environmental science [1][2]. This interface plays a crucial role in ensuring the safety
  • and quality of processed and packaged products. The selection of packaging materials and their interaction with biological components have emerged as critical determinants impacting the preservation, shelf life, and overall acceptability of dairy products [3]. Consequently, the interface between
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024
Other Beilstein-Institut Open Science Activities