Search results

Search for "ion implantation" in Full Text gives 43 result(s) in Beilstein Journal of Nanotechnology.

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • carbon in nickel at high temperatures and removing the metal after the deposition process. Here carbon is introduced into Ni by deposition of C/Ni sandwich layers or by ion implantation [28] or dissolution of carbon into nickel in a plasma-enhanced CVD process [29]. Upon heating up to about 1000 °C
PDF
Album
Review
Published 15 May 2017

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • ], processes for graphene based electronics, the preparation of ultra-hydrophobic fluorine polymers by Ar-ion bombardment [12], and ion implantation to form nanoparticles inside polymers [13]. Common to the different applications is the damage created by the energetic ions upon their implantation in the
  • . Finally, a transition of a carbonised phase to an amorphous carbon or graphite-like material occurs [13]. Another interesting field of investigation is the formation of nanoparticles by ion implantation. By adapting the impact energy, the implantation depth can be well controlled, and so the localisation
  • of nano-sized carbon-rich clusters, along with the enhancement of photoluminescence. Paramagnetic properties can also appear due to changes in the polymer structure. Another method to tune the magnetic properties is the formation of nanoparticles by ion implantation [13]. For ion microscopy, or more
PDF
Album
Full Research Paper
Published 17 Nov 2016

Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

  • Ismael García Serrano,
  • Javier Sesé,
  • Isabel Guillamón,
  • Hermann Suderow,
  • Sebastián Vieira,
  • Manuel Ricardo Ibarra and
  • José María De Teresa

Beilstein J. Nanotechnol. 2016, 7, 1698–1708, doi:10.3762/bjnano.7.162

Graphical Abstract
  • ][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45]. In order to design vortex-pinning landscapes, electron beam lithography is commonly used to fabricate arrays of holes [33][40] or arrays of magnetic dots/lines [30][34][36][39][41], whereas selective ion implantation [29][38][41
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2016

A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

  • Kamil Moldosanov and
  • Andrei Postnikov

Beilstein J. Nanotechnol. 2016, 7, 983–989, doi:10.3762/bjnano.7.90

Graphical Abstract
  • states at the Fermi level. This can be achieved, e.g., by ion implantation of Ta or Fe impurities into the subsurface layer of nanoobjects. The idea is that the doping of bulk gold with Ta or Fe atoms creates impurity d-levels (in one of the spin channels, since the impurities are magnetic) at the Fermi
PDF
Album
Full Research Paper
Published 06 Jul 2016

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • comparable total ion dose. The accumulated dose will at some point induce an unacceptable number of defects and a crystalline material will become amorphous [16]. It needs to be noted, though, because of the high ionicity of MgO its amorphization by ion implantation is difficult [31]. In this study, not more
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Near-field visualization of plasmonic lenses: an overall analysis of characterization errors

  • Jing Wang,
  • Yongqi Fu,
  • Zongwei Xu and
  • Fengzhou Fang

Beilstein J. Nanotechnol. 2015, 6, 2069–2077, doi:10.3762/bjnano.6.211

Graphical Abstract
  • patterning. However, oxidation of the metal film will be caused by thermal annealing. The internal stress can lead to deformation of the fabricated structures and the NSOM measurement results will change accordingly. The internal stress τ is determined by the following parameters where d is the ion
  • implantation depth, E is the bombardment energy (30 keV here), ρ is the density of the substrate material, t is the milling time, and V0 is the ion distribution volume originating from the implantation. It can be seen that τ is proportional to implantation depth, ion energy, milling time and material density
PDF
Album
Full Research Paper
Published 26 Oct 2015

Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

  • Sebastian Gutsch,
  • Daniel Hiller,
  • Jan Laube,
  • Margit Zacharias and
  • Christian Kübel

Beilstein J. Nanotechnol. 2015, 6, 964–970, doi:10.3762/bjnano.6.99

Graphical Abstract
  • -plane energy-filtered TEM (EFTEM) as was demonstrated for Si NCs formed by low energy Si ion implantation [10][26], plasma-enhanced chemical vapor deposition (PE-CVD) [27] or evaporation [28] followed by a high temperature annealing. The bottleneck in such measurements is the low TEM plane view specimen
  • these membranes that also withstand the high temperature annealing that is needed to induce phase separation and crystallization of the Si NC layers. In contrast to the above mentioned ion implantation, deposition processes allow for sharp interfaces between two confining silicon oxide (SiO2) layers
PDF
Album
Full Research Paper
Published 15 Apr 2015

Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

  • Jacques Perrin Toinin,
  • Alain Portavoce,
  • Khalid Hoummada,
  • Michaël Texier,
  • Maxime Bertoglio,
  • Sandrine Bernardini,
  • Marco Abbarchi and
  • Lee Chow

Beilstein J. Nanotechnol. 2015, 6, 336–342, doi:10.3762/bjnano.6.32

Graphical Abstract
  • and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO2, (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing. Scanning electron microscopy and transmission electron microscopy were used to characterize the
  • postannealing conditions. Keywords: germanium; ion implantation; porous material; Introduction Porous materials are of great interest for a large scope of industrial applications dealing with adsorption, catalysis, or molecular filtration and isolation. Furthermore, porous semiconductors can exhibit
  • electrochemical etching, spark processing or inductively coupled plasma chemical vapor deposition [13][14][15]. Ion implantation is a well-known technique used in the microelectronic industry to dope the active regions of semiconductor devices. Generally, implantation leads to the formation of defects of
PDF
Album
Full Research Paper
Published 30 Jan 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • graphene (N-graphene) has since been synthesized by using numerous methods, amongst them chemical vapor deposition [126][127], post-synthesis treatments [128][129], and ion implantation [30] (see also [107][130]). Accordingly, there are hundreds of studies that use XPS to study nitrogen doping. However, it
PDF
Album
Review
Published 15 Jan 2015

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • Growth and characterization Much of current research on Si/Ge NCs is focused on the preparation and characterization of NCs embedded in a SiO2 matrix. In this paper, we have restricted our analysis to growth techniques, such as magnetron co-sputtering and ion implantation. With these techniques, it is
  • significantly decreases the thermal budget, when compared to other growth techniques. Moreover, it implies that PLD should be considered as an excellent alternative to the widely used magnetron co-sputtering technique for the deposition of complex oxide thin films and NCs. II.2 Ion implantation An ion beam
  • by varying the implantation conditions (implantation energy and dose) and subsequent annealing. It is a well-known fact that Si ion implantation of SiO2 is characterized by the production of a large number of oxygen vacancies and other defects in the oxide matrix. These defects enhance the QD
PDF
Album
Review
Published 16 Oct 2014

Sublattice asymmetry of impurity doping in graphene: A review

  • James A. Lawlor and
  • Mauro S. Ferreira

Beilstein J. Nanotechnol. 2014, 5, 1210–1217, doi:10.3762/bjnano.5.133

Graphical Abstract
  • methods and techniques to achieve this have been developed to include chemical vapour deposition (CVD), using NH3 as a precursor, arc discharge [23], embedded nitrogen and carbon sources within a metal substrate [24], ion implantation [25][26], ammonia [27] or nitrogen plasma [28][29] treatments, and
PDF
Album
Review
Published 05 Aug 2014

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • that an excessive exposure to He+ ions (>4000 µC/cm2) leads to a damage of the CNMs, which is attributed to the swelling of the Au substrate from ion implantation [24]. A complete cross-linking of NBPT SAMs by He+ ion irradiation requires an exposure dose of approximately 850 µC/cm2, which is roughly
PDF
Album
Full Research Paper
Published 21 Feb 2014

Synthesis of embedded Au nanostructures by ion irradiation: influence of ion induced viscous flow and sputtering

  • Udai B. Singh,
  • D. C. Agarwal,
  • S. A. Khan,
  • S. Mohapatra,
  • H. Amekura,
  • D. P. Datta,
  • Ajay Kumar,
  • R. K. Choudhury,
  • T. K. Chan,
  • Thomas Osipowicz and
  • D. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 105–110, doi:10.3762/bjnano.5.10

Graphical Abstract
  • mechanisms. Several methods are used for the fabrication of nanostructures. Among them, ion irradiation and ion implantation are two well established tools for the synthesis of nanostructures on the surface or embedded NPs [6][7][8][9][10][11]. The atom beam sputtering technique has been used in our group
  • for the synthesis of embedded Au NPs in a silica matrix [12][13][14][15][16]. Ion implantation is one of the standard ways for the synthesis of noble metal NPs embedded in a matrix and offers the control over the depth distribution of the NPs by properly adjusting the parameters of the ion beam such
  • with sputtering during the irradiation. The total recoil concentration of Au is nearly of the same concentration which is required for the synthesis of embedded NPs through ion implantation reported by Stepanov et al. [22]. Residual metal on the surface leads to the synthesis of nanostructures on the
PDF
Album
Full Research Paper
Published 29 Jan 2014

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • exposed to a 10 W air plasma for 15 min immediately before loading the samples into the main chamber. After ion implantation the topography of the samples was measured with an Agilent 5100 atomic force microscope (AFM) in intermittent mode. The cantilever was a Mikromasch NSC silicon probe, with a
PDF
Album
Full Research Paper
Published 24 Jul 2013

A look underneath the SiO2/4H-SiC interface after N2O thermal treatments

  • Patrick Fiorenza,
  • Filippo Giannazzo,
  • Lukas K. Swanson,
  • Alessia Frazzetto,
  • Simona Lorenti,
  • Mario S. Alessandrino and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2013, 4, 249–254, doi:10.3762/bjnano.4.26

Graphical Abstract
  • (flat and faceted). Both samples were subjected to p-type doping by Al ion implantation and to a subsequent high-temperature (1650 °C) postimplantation annealing for dopant activation. On one sample, the SiC surface was coated by a protective carbon capping layer during the annealing, resulting in a
PDF
Album
Full Research Paper
Published 08 Apr 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • diamond layers has to be developed. As demonstrated and discussed in Section 1, ion implantation into bulk diamond crystals of high purity is a well-established technique [4] to produce defects such as the NV center, offering nanometer spatial resolution and a controlled defect density. A drawback, on the
  • direct synthesis of diamond crystals by microwave plasma enhanced chemical vapor deposition (MWPECVD) offers an alternative route to integrate color centers and was investigated in addition to ion implantation [19][20]. We deposited single-crystal diamond layers of high phase and structural purity by
  • . Conclusion We have performed a series of key experiments towards strong coupling of solid-state quantum emitters to plasmonic and dielectric optical resonators. First, we have demonstrated controlled creation of nitrogen–vacancy centers in diamond with nanometer spatial control by ion implantation through
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • chemisorbed on the surface, and a small portion will be ionized (required energy Te: 13.6 eV). The atomic ion implantation may also hydrogenate the other side of the surface layer and even some other subsurface layers. The 3.5 eV plasma used in this work results in an ion impact energy (εi) of 12.6 eV on the
PDF
Album
Full Research Paper
Published 13 Dec 2012

Nano-structuring, surface and bulk modification with a focused helium ion beam

  • Daniel Fox,
  • Yanhui Chen,
  • Colm C. Faulkner and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2012, 3, 579–585, doi:10.3762/bjnano.3.67

Graphical Abstract
  • the lamella. The purpose of this exposure geometry was to produce a wedge shape of silicon within the lamella so that we could observe the minimum thickness dimensions which can be fabricated by HIM. It also allows us to analyze the subsurface modification effects due to helium ion implantation. All
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2012
Other Beilstein-Institut Open Science Activities