Search results

Search for "liquids" in Full Text gives 209 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • components, VCPD can be obtained directly without the need to employ a feedback loop, knowledge of the tip–sample capacitance gradient, or application of a DC bias. Initially implemented in ultrahigh vacuum by Takeuchi et al. [30], the method was extended to liquids by Kobayashi et al. [80] and to ambient
  • establish in liquids in the presence of ions. Multifrequency OL KPFM-based approaches are therefore preferred in liquid environments. The ability to place multiple harmonics on eigenmodes to enhance performance in a single pass is preferable over multi-pass DH-based techniques. As such, ED and HM are the
PDF
Full Research Paper
Published 12 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • energy of the system. The larger the individual free surface energies, the larger the energetic gain upon the formation of an interface. Above, we have related the temperature sensitivity of the surface energy κ to the surface entropy Ss. For most liquids, the value κ is negative, owing to an increase in
  • chemical segregation at the interface with the Ga–In–Sn eutectic melt. Beyond the importance of our results for a comprehensive understanding of the physical chemistry of metallic melt interfaces, these results are relevant for designing a microfluidic system with metallic liquids governed by interfacial
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • stability and impermeability to gases and liquids. In contrast, the surrounding exposed areas of the Cu foil surface exhibited high reactivity and were readily oxidized to copper oxides with a noticeable color change. The apparent color contrast between the oxidized and non-oxidized Cu surfaces made the
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • KPFM. Moreover, AC-KPFM is applicable in both amplitude modulation and frequency modulation mode. Thus, it contributes to advancing SPV measurements in various environments, such as vacuum, air, and liquids. This method can be utilized for direct measurements of changes in surface potential induced by
  • found that AC-KPFM can detect faster SPV responses (microseconds to milliseconds) depending on the modulation frequency of the laser power. AC-KPFM is applicable to both AM and FM modes, so it contributes to advancing SPV measurements in various environments such as vacuum, air, and liquids. Note that
PDF
Album
Full Research Paper
Published 25 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • the range of 1–10 layers, in a range of different liquids, at a wide range of concentrations [13][14]. The mechanism of ultrasonic exfoliation involves ultrasonic waves in liquid media creating bubbles or voids in the liquid, which generate shear forces or cavitation bubbles upon collapsing, which
PDF
Album
Full Research Paper
Published 18 Jul 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • small voltage and controlling the airflow between the two cavities. The system can also be used for molecular sieving of gases and the aspiration and dispensing of liquids by introducing pores in the graphene membranes. NEM physical unclonable functions Just as NEM switches use the pull-in instability
PDF
Album
Review
Published 12 Apr 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • , Czech Republic 10.3762/bjnano.13.2 Abstract Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical
  • overview of the properties and applications of the produced NPs. Keywords: low-pressure plasmas; magnetron; nanoparticles; nanoparticle formation; sputtering; sputtering onto liquids; Introduction According to the general terminology, nanoparticles (NPs) are objects that have a size of less than 100 nm
  • in the production chain that might cause detrimental issues, for example, NP aggregation. In this respect, low-pressure plasma-based sputtering onto liquids (SoL) is a relatively new synthetic approach in which the purification step can be avoided. This technique is based on the sputtering of
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • techniques, such as the addition of ionic liquids (ILs) with low viscosity and high dielectric constant values or some suitable fillers have been used by the research community to increase the ionic conductivity of polymer electrolytes [6][7]. As mentioned above, one way to increase the ionic conductivity is
PDF
Album
Full Research Paper
Published 18 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • boundary conditions [10][11][12][13][14][15]. For example, many studies have shown that on hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, significantly lowering the ability of liquid drops to stick. In other words, liquids can easily slip along such solid surfaces and
  • potential applications in many areas of applied science and engineering [16][17][18][19][20][21]. In the field of nanofluidics, probing flow boundary conditions for nanoconfined liquids contributes to the deep understanding of the nature of nanohydrodynamics, which is the theoretical basis for the design
  • conversion from 3 to 70% [23]. Generally, the methods to investigate slip boundary conditions for nanoconfined liquids include theoretical analysis, physical experiments, and numerical simulations [8][24][25][26][27][28][29][30][31][32][33][34]. In recent years, machine learning methods have also been
PDF
Album
Review
Published 17 Nov 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • nanomaterials in CO2 mitigation and climate change control [20][21][22]. Several other studies reported novel environmental remediation approaches based on nanomaterials [23][24]. Deep eutectic solvents (DESs) are a class of nascent sustainable, non-aqueous solvents, comparable to room-temperature ionic liquids
PDF
Album
Review
Published 18 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • become subjected to cavitation, thus promoting cellular uptake and delivery of entrapped drug/agents into the desired area [127]. Acoustic droplet vaporization has been carried out with many liquids whose boiling points are close to the body temperature. Fluorocarbons, especially perfluorocarbons (PFCs
PDF
Album
Review
Published 11 Aug 2021

Reducing molecular simulation time for AFM images based on super-resolution methods

  • Zhipeng Dou,
  • Jianqiang Qian,
  • Yingzi Li,
  • Rui Lin,
  • Jianhai Wang,
  • Peng Cheng and
  • Zeyu Xu

Beilstein J. Nanotechnol. 2021, 12, 775–785, doi:10.3762/bjnano.12.61

Graphical Abstract
  • , study the factors affecting resolution [16][17][18][19][20][21][22], and establish an appropriate simulation methodology for the explanation of complex imaging mechanism in liquids [23][24][25]. Besides, there has been a recent flurry of researches applying machine learning to AFM, including predicting
PDF
Album
Full Research Paper
Published 29 Jul 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • can be easily synthesized from the precursor material bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2) in different ionic liquids without any additional stabilizing or reducing agents [46]. Ionic liquids have the ability to exfoliate graphene oxide into single sheets. Thus, a higher surface area can be
  • achieved [47]. Thermally reduced graphene oxide was tested before with different metals in ionic liquids [48][49]. The decoration of nanoparticles on rGO can be achieved in situ or by mixing previously prepared solutions [50]. Here, we chose the ionic liquid [BMIm][NTf2] for an in situ microwave
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • -standing, large-area PM monolayer remains challenging. Previous approaches for the oriented assembly of PM were based on solid supports [8][29][30] or interfaces between liquids [31][32]. Other approaches, by implementing transmembrane proteins such as BR in lipid bilayers, have so far been used only to
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • alternative approach to the fixation, dehydration, drying, and even coating stages outlined above is to apply ionic liquids during sample preparation. Ionic liquids are organic salts with low melting points which are fluid at room temperature. They are persistent as liquids under the high-vacuum conditions of
  • a typical electron microscope and exhibit conductive properties. This means that samples can be immersed in an ionic liquid, for 10–600 s, blotted, loaded onto a sample holder, and then imaged [68]. Compared to other preparation techniques, the preparation time using ionic liquids is extremely short
PDF
Album
Review
Published 04 Jan 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • , morphology, and size. This antimicrobial activity can be used in numerous sectors, such as textile, animal, or antimicrobial packaging industries. In the latter, NPs are used to inhibit and control microbial growth, resist against the penetration of liquids or gases, retain moisture, and maintain packaged
PDF
Album
Review
Published 25 Sep 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • bundle is larger than the elastic force [26]. This bundling effect is the main limiting factor of this integration scheme. To overcome this issue, one can use liquids with low surface tension or supercritical CO2 [27]. However, this would increase complexity and cost of the process significantly
PDF
Album
Full Research Paper
Published 23 Sep 2020

Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet

  • Ganji Narender,
  • Kamatam Govardhan and
  • Gobburu Sreedhar Sarma

Beilstein J. Nanotechnol. 2020, 11, 1303–1315, doi:10.3762/bjnano.11.114

Graphical Abstract
  • magnetic properties of electrically conducting fluids are studied is called magnetohydrodynamics (MHD). Magnetic fluids, liquids, metals and mixtures containing water, salt and other electrolytes are examples of materials that can be investigated via MHD. Hannes Alfen was the first to introduce the term
PDF
Album
Full Research Paper
Published 02 Sep 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • local temperatures are very high, metal fluorides and sulfides melt and fill the nanotubes via capillary forces. The liquids solidify as one-dimensional nanorods inside the nanotubes. The usage of g-C3N4, instead of graphite, was found to be beneficial, especially for obtaining high yields of nanorods
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Effect of magnetic field, heat generation and absorption on nanofluid flow over a nonlinear stretching sheet

  • Santoshi Misra and
  • Govardhan Kamatam

Beilstein J. Nanotechnol. 2020, 11, 976–990, doi:10.3762/bjnano.11.82

Graphical Abstract
  • positive, there is heat generation across the flow, which enhances the thermal boundary layer thickness. Two-dimensional coordinate system and fluid flow mechanism of a nanoparticle suspension. Influence of the slip parameter for liquids ξ on the streamwise velocity component f´(η) when n = 2.0, M = 0.0, Q
  • = 0.0, Pr = 2.0, Nb = Nt = 0.5, Le = 5.0, and Fw = 0.2. Influence of the slip parameter for liquids ξ on the temperature distribution θ(η) when n = 2.0, M = 0.0, Q = 0.0, Pr = 2.0, Nb = Nt = 0.5, Le = 5.0, and Fw = 0.2. Influence of the slip parameter for liquids ξ on the concentration distribution ϕ(η
PDF
Album
Full Research Paper
Published 02 Jul 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • synthesized from glassy carbon [16], graphite [26], polymethyl methacrylate (PMMA) [27], and a graphite–cement mixture [6] via LAL in various liquids. In general, there are three major mechanisms contributing to the photoluminescence (PL) of CDs: 1) size-dependent bandgap (quantum confinement), 2) surface
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside

  • Gennady L. Burygin,
  • Polina I. Abronina,
  • Nikita M. Podvalnyy,
  • Sergey A. Staroverov,
  • Leonid O. Kononov and
  • Lev A. Dykman

Beilstein J. Nanotechnol. 2020, 11, 480–493, doi:10.3762/bjnano.11.39

Graphical Abstract
  • obtained through holding the grid near an incandescent lamp for 2 min. The excess of the liquids was removed by touching the grid to a strip of the filter paper. The grid was washed by a drop of deionized water, dried and then analyzed by TEM. According to TEM data, the prepared Ara6-GNPs 3 and 4 had the
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • carbonate [60], propylene carbonate [61] and ionic liquids [1] in contrast to argon. Furthermore, the adsorption of xylene isomers is an important step for synthesizing polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) [62]. Moreover, Ar physisorption measurements are conducted at 87 K
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • parasitic resonance peaks in the cantilever tune, which is well known for tapping-mode AFM in low-Q environments such as liquids. As with imaging in fluids, acquiring a thermal tune prior to the mechanical tune helps to find the correct resonance peak to use. The poor mechanical tune caused by the low Q
PDF
Album
Full Research Paper
Published 29 Nov 2019
Other Beilstein-Institut Open Science Activities